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Abstract

Learning by imitation represents an important mechanism for rapid acquisition of
new behaviors in humans and robots. A critical requirement for learning by imi-
tation is the ability to handle uncertainty arising from the observation process as
well as the imitator’s own dynamics and interactions with the environment. In this
paper, we present a new probabilistic method for inferring imitative actions that
takes into account both the observations of the teacher as well as the imitator’s
dynamics. Our key contribution is a nonparametric learning method which gen-
eralizes to systems with very different dynamics. Rather than relying on a known
forward model of the dynamics, our approach learns a nonparametric forward
model via exploration. Leveraging advances in approximate inference in graphi-
cal models, we show how the learned forward model can be directly used to plan
an imitating sequence. We provide experimental results for two systems: a biome-
chanical model of the human arm and a 25-degrees-of-freedom humanoid robot.
We demonstrate that the proposed method can be used to learn appropriate motor
inputs to the model arm which imitates the desired movements. A second set of
results demonstrates dynamically stable full-body imitation of a human teacher by
the humanoid robot.

1 Introduction

A fundamental and versatile mechanism for learning in humans is imitation. Infants as young as 42
minutes of age have been found to imitate facial acts such as tongue protrusion while older children
can perform complicated forms of imitation ranging from learning to manipulate novel objects in
particular ways to imitation based on inference of goals from unsuccessful demonstrations (see [11]
for a review). Robotics researchers have become increasingly interested in learning by imitation
(also called “learning by watching” or “learning from demonstration”) as an attractive alternative to
manually programming robots [5,8,19]. However, most of these approaches do not take uncertainty
into account. Uncertainty in imitation arises from many sources including the internal dynamics of
the robot, the robot’s interactions with its environment, observations of the teacher, etc. Being able
to handle uncertainty is especially critical in robotic imitation because executing actions that have
high uncertainty during imitation could lead to potentially disastrous consequences.

In this paper, we propose a new technique for imitation that explicitly handles uncertainty using a
probabilistic model of actions and their sensory consequences. Rather than relying on a physics-
based parametric model of system dynamics as in traditional methods, our approach learns a non-
parametric model of the imitator’s internal dynamics during a constrained exploration period. The
learned model is then used to infer appropriate actions for imitation using probabilistic inference
in a dynamic Bayesian network (DBN) with teacher observations as evidence. We demonstrate the
viability of the approach using two systems: a biomechanical model of the human arm and a 25-
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Figure 1: Graphical model and systems for imitation learning. (a) Dynamic Bayesian network
for inferring a sequence of imitative actions a1:T−1 from a sequence of observations of the teacher
o1:T . The model also allows for probabilistic constraint variables ct on the imitators states st.
Nonparametric model learning constructs the model P (st+1|st,at) from empirical data. (b) The two
link biomechanical model of the human arm (from [10]) used in experiments on learning reaching
movements via imitation. (c) The Fujitsu Hoap-2 humanoid robot used in our experiments on full-
body, dynamic imitation.

degrees-of-freedom humanoid robot. Our first set of results illustrate how the proposed method can
be used to learn appropriate motor commands for producing imitative movements in the model hu-
man arm. The second set of results demonstrates dynamically stable full-body imitation of a human
teacher by the humanoid robot. Taken together, the results suggest that a probabilistic approach to
imitation based on nonparametric model learning could provide a powerful and flexible platform for
acquiring new behaviors in complex robotic systems.

2 Imitation via Inference and Constrained Exploration

In this section we present our inference-based approach to selecting a set of actions based on ob-
servations of another agent’s state during demonstration, and a set of probabilistic constraints. We
present our algorithms within the framework of the graphical model shown in Fig. 1(a). We denote
the sequence of continuous action variables a1, ··,at, ··,aT−1. We use the convention that the agent
starts in an initial state s1, and as the result of executing the actions visits the set of continuous states
s2, ··, st, ··, sT . Note that an initial action a0 can be trivially included.

In our imitation learning framework the agent observes a sequence of continuous variables
o1, ··,ot, ··,oT−1 providing partial information about the state of the teacher during demonstration.
The conditional probability density P (ot|st) encodes how likely an observation of the teacher (ot)
agrees with an an agent’s state (st) while performing the same motion or task. This marks a key
difference with the Partially Observable Markov Decision Process (POMDP) framework. Here the
observations are of the demonstrator (generally with different embodiment), and we currently as-
sume that the learner can observe it’s own state.

Probabilistic constraints on state variables are included within the graphical model by a set of
variables ct. The corresponding constraint models P (ct|st) encode the likelihood of satisfying
the constraint in state st. Constraint variables are used in our framework to represent goals such
as reaching a desired goal state (cT = sG), or a going through a way point (ct = sW ). The
choice of the constraint model is domain dependent. Here we utilize a central Gaussian density
P (ct|st) = N (ct − st; 0,Σc). The variance parameter for each constraint may be set by hand
using domain knowledge, or could be learned using feedback from the environment.

Given a set of evidence E ⊆ {o1, ··,oT , c1, ··, cT } we desire actions which maximize the likelihood
of the evidence. Although space limitations rule out a thorough discussion, to achieve a tractable in-
ference we focus here on computing marginal posteriors over each action rather than the maximum a
posteriori (MAP) sequence. While in principle any algorithm for computing the marginal posterior
distributions of the action variables could be used, we find it convenient here to use Pearl’s belief
propagation (BP) algorithm [13]. BP was originally restricted to tree structured graphical models
with discrete variables. Several advances have broadened the applicability to general graph struc-



tures [18] and to continuous variables in undirected graph structures [16]. Here we derive belief
propagation for the directed case though we note that the difference is largely a semantic conve-
nience, as any Bayesian network can be represented as a Markov random field, or more generally
a factor graph [9]. Our approach is most similar to Nonparametric Belief Propagation (NBP) [16],
with key differences highlighted throughout this section.

The result of performing belief propagation is a set of marginal belief distributions B(x) =
P (x|E) = π(x)λ(x). This belief distribution is the product of two sets of messages π(x) and
λ(x), which represent the information coming from neighboring parent and children variable nodes
respectively. Beliefs are computed via messages passed along the edges of the graphical model,
which are distributions over single variables. The i-th parent of variable x passes to x the distribu-
tion πx(ui). Child j of variable x would pass to x the distribution λyj

(x). In the discrete (finite
space) case, messages are easily represented by discrete distributions. For the case of arbitrary con-
tinuous densities message representation is in itself a challenge. As we propose a nonparametric,
model-free approach to learning system dynamics it follows that we also want to allow for (approx-
imately) representing the multi-modal, non-Gaussian distributions that arise during inference. As
in the NBP approach [16] we adopt the use of a mixture of Gaussian kernels (Eq. 5) to represent
arbitrary message and belief distributions.

For convenience we treat observed and hidden variables in the graph identically by allowing a node
X to send itself the message λX(x). This “self message” represented using a Dirac delta distribution
about the observed value is considered in the product of all messages from the m children (denoted
Yj) of X:

λ(x) = λX(x)
m∏
j

λYj
(x). (1)

Messages from parent variables are incorporated by integrating the conditional probability of x over
all possible values of the k parents times the probability that combination of values as evaluated in
the corresponding messages from a parent node:

π(x) =
∫
u1:n

P (x|u1, ··,un)
n∏
i

πX(ui)du1:n. (2)

Messages are updated according to the following two equations:

λX(uj) =
∫
x

λ(x)
∫
u1:n/j

P (x|u1, ··,un)
n∏

i 6=j

πx(ui)du1:n/jdx (3)

πYj
(x) = π(x)λX(x)

∏
i 6=j

λYi
(x). (4)

The main operations in Eqs 1-4 are integration and multiplication of mixtures of Gaussians. The
evaluation of integrals will be discussed after first introducing Gaussian Mixture Regression in
Sec. 3. Although the product of a set of mixtures of Gaussians is simply another mixture of Gaus-
sians, the complexity (in terms of the number of components in the output mixture) grows exponen-
tially in the number of input mixtures. Thus an approximation is needed to keep inference tractable
in the action sequence length T . Rather than use a multiscale sampling method to obtain a set of rep-
resentative particles from the product as in [7] we first assume that we can compute the exact product
density for a given set of input mixtures. We then apply the simple heuristic of keeping a fixed num-
ber of mixture components, which through experimentation we found to be highly effective. This
heuristic is based on the empirical sparseness of product mixture components’ prior probabilities.
For example, when the message πst+1(st) coming from a previous state has M = 10 components,
the message from the action πat−1(at) has N = 1 component (based on a unimodal Gaussian prior),
and the GMR model has P =67 components, the conditional product has MNP =670 components.
However, we see experimentally that less than ten components have a weight which is within five
orders of magnitude of the maximal weight. Thus we can simply select the top K ′=10 components.
This sparsity should not be surprising as the P model components represent localized data, and only
a few of these components tend to have overlap with the belief state being propagated. Currently we
fix K ′ although an adaptive mechanism could further speed inference.
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Figure 2: Nonparametric GMR model selection. a) The value of our model selection criteria rises
from the initial model with K =L components, to a peak around 67 components, after which it falls
off. b) The three series of plots show the current parameters of the model (blue ellipses), layered
over the set of regression test points (in green), and the minimum spanning tree (red lines) between
neighboring components. Shown here is a projection of the 14-dimensional data (projected onto the
first two principal components of the training data).

We now briefly describe our algorithm 1 for action inference and constrained exploration. The inputs
to the action inference algorithm are the set of evidence E , and an instance of the dynamic Bayesian
networkM={PS , PA, PF , PO, PC}, composed of the prior on the initial state, the prior on actions,
the forward model, the imitation observation model, and the probabilistic constraint model respec-
tively. Inference proceeds by first ”inverting” the evidence from the observations and constraint
variables yielding the messages λot(st), λct(st). After initialization from the priors PS , PA we
perform a forward planning pass thereby computing the forward state messages πst+1(st). Similarly
a backward planning sweep produces the messages λst(st−1). The algorithm then combines infor-
mation from forward and backward messages (via Eq. 3) to compute belief distributions of actions.
We then select the maximum marginal belief action ât from the belief distribution using the mode
finding algorithm described in [4].

Our algorithm to iteratively explore the state and action spaces while satisfying the constraints placed
on the system builds on the inference based action selection algorithm described above. The inputs
are an initial model M0, a set of evidence E , and a number of iterations to be performed N . At each
iteration we infer a sequence of maximum marginal actions and execute them. Execution yields a
sequence of states, which are used to update the learned forward model (see Section 3). Using the
new (ideally more accurate) forward model we show we are able to obtain a better imitation of the
teacher via the newly inferred actions. The final model and sequence of actions are then returned
after N constrained exploration trials.

For simplicity, we currently assume that state and action prior distributions, and the observation and
constraint models are pre-specified. Evidence from our experiments shows that specifying these
parts of the model is not overly cumbersome even in the real-world domains we have studied. The
focus of our algorithms presented here is to learn the forward model which in many real-world
domains is extremely complex to derive analytically. Sections 4.1 and 4.2 describe the results of our
algorithms applied in the human arm model and humanoid robot domains respectively.

3 Nonparametric Model Learning

In this section we investigate an algorithm for learning a nonparametric forward model via Gaussian
Mixture Regression (GMR) [17]. The motivation behind selecting GMR is that it allows for closed
form evaluation of the integrals found in Eqs 1-4. Thus it allows efficient inference without the need
to resort to Monte Carlo (sample based) approximations in inference.

1For detailed algorithms please refer to the technical report available at http://www.cs.washington.edu/homes/grimes/dil



The common Gaussian Mixture Model (GMM) forms the basis of Gaussian Mixture Regression:

p(x|θ) =
∑

k

p(k|θk)p(x|k, θk) =
∑

k

wk N (x;µk,Σk) . (5)

We now assume that the random variable X is formed via the concatenation of the n random vari-
ables X1, X2, ··, Xn, such that x = [x>1 x>2 · ·x>n ]>. The theorem of Gaussian conditioning states
that if x ∼ N (µ,Σ) where µ = [(µi)] and Σ = [(Σij)] then the variable Xi is normally distributed
given Xj :

p(Xi = xi|Xj = xj) = N
(
µi + ΣijΣ−1

jj (xj − µj),Σii − ΣijΣ−1
jj Σji

)
. (6)

Gaussian mixture regression is derived by applying the result of this theorem to Eq. 5:

p(xi|xj , θ) =
∑

k

wkj(xj)N (xi;µkij(xj),Σkij) . (7)

We use µkj denote the mean of the j-th variable in the k-th component of the mixture model. Like-
wise Σkij denotes the covariance between the variables xi and xj in the k-th component. Instead
of a fixed weight and mean for each component we now have a weight function dependent on the
conditioning variable xj :

wkj(x) =
wk N (x;µkj ,Σkjj)∑

k′ wk′ N (x;µk′j ,Σk′jj)
. (8)

Likewise the mean of the k-th conditioned component of xi given xj is a function of xj :

µkij(x) = µki + ΣkijΣ−1
kjj(x− µkj). (9)

Belief propagation requires the evaluation of integrals convolving the conditional distribution of one
variable xi given a GMM distribution γ(·, θ′) of another variable xj :∫

p(xi|xj , θ)γ(xj ; θ′)dxj (10)

Fortunately rearranging the terms in the densities reduces the product of the two GMMs to a third
GMM, which is then marginalized w.r.t. xi under the integral operator.

We now turn to the problem of learning a GMR model from data. As the learning methodology we
wish to adopt is non-parametric we do not want to select the number of components K a priori. This
rules out the common strategy of using the well known expectation maximization (EM) algorithm
for learning a model of the full joint density p(x). Although Bayesian strategies exist for selecting
the number of components, as pointed out by [17] a joint density modeling approach rarely yields
the best model under a regression loss function. Thus we adopt a very similar algorithm to the
Iterative Pairwise Replace Algorithm (IPRA) [15, 17] which simultaneously performs model fitting
and selection of the GMR model parameters θ.

We assume that a set of state and action histories have been observed during the N trial histories:
{[si

1,a
i
1, s

i
2,a

i
2, ··,ai

T−1s
i
T ]}N

i=1. To learn a GMR forward model we first construct the joint variable
space: x = [s>a>(s′)>]> where s′ denotes the resulting state when executing action a in state s.
The time-invariant dataset is then represented with by matrix Xtr = [x1, ··,xL]

Model learning and selection first constructs the fully non-parametric representation of the train-
ing set with K = L isotropic mixture components centered on each data point µk = xk. This
parametrization is exact at making predictions at points within the training set, but generalizes ex-
tremely poorly. The algorithm proceeds by merging components which are very similar, as deter-
mined by a symmetric similarity metric between two mixture components. Following [17] we use
the Hellinger distance metric. To perform efficient merging we first compute the minimum spanning
tree of all mixture components. Iteratively, the algorithm merges the closest pair in the minimum
spanning tree. Merging continues until there is only a single Gaussian component left. Merging
the two mixtures requires computation of new local mixture parameters (to fit the data covered by
both). Rather than the ”method of moments” (MoM) approach to merging components and then
later running expectation maximization to fine-tune the selected model, we that found performing



local maximum likelihood estimation (MLE) within model selection to be more effective at finding
an accurate model.

In order to effectively perform MLE merges we first randomly partition the training data into two
sets: one of ”basis” vectors that we compute the minimum spanning tree on, and one of regression
data points. In our experiments here we used a random fifth of the data for basis vectors. The goal
of our modified IPRA algorithm is to find the model which best describes the regression points. We
then define the regression likelihood over the current GMR model parameters θ:

L(θ, Xtr) =
L∑
l

n∑
i

p(xl
i|xl

1,2,i−1,i+1,n, θ). (11)

The model of size K which maximizes this criteria is returned for use in our inference procedure.
Fig. 2 demonstrates the learning of a forward model for the biomechanical arm model from Section
4.1. We found the regression-based model selection criteria to be effective at generalizing well
outside both the basis and regression sets.

4 Results

4.1 Imitating Reaching Movements
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Figure 3: Learning to imitate a reaching motion. a) The first row shows the motion of the teacher’s
hand (shown in black) in Cartesian space, along with the target position. The imitator explores
the space via body babbling (second plot, shown in red). From this data a GMR model is learned,
constrained exploration is performed to find an imitative reaching motion (shown every 5 iterations).
b) The velocities of the two joints during the imitation learning process. By trial number 20 the
imitator’s velocities (thin lines) closely match the demonstrator’s velocities (the thick,light colored
lines), and meet the zero final velocity constraint. c) The teacher’s original muscle torques, followed
by the babbling torques, and the torques computed during constrained exploration.

In the first set of experiments we learn reaching movements via imitation in a complex non-linear
model of the human arm. The arm simulator we use is a biomechanical arm model [10] consisting
of two degrees of freedom (denoted θ) representing the shoulder and elbow joints. The arm is
controlled via two torque inputs (denoted τ ) for the two degrees of freedom. The dynamics of the
arm are described via the following differential equation:

M(θ)θ̈ + C(θ, θ̇) + B(θ̇) = τ (12)

where M is the inertial force matrix, C is a vector of centripetal and Coriolis forces, and B is the
matrix of force due to friction at the joints.

Fig. 3 shows the process of learning to perform a reaching motion via imitation. First we compute
the teacher’s simulated arm motion using the model-based iLQG algorithm [10] based on start and
target positions of the hand. By executing the sequence of computed torque inputs [â1:T−1] from
a specified initial state s1, we obtain the state history of the demonstrator [ŝ1:T ]. To simulate the
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Figure 4: Humanoid robot dynamic imitation. a) The first row consists of frames from an IK fit
to the marker data during observation. The second row shows the result of performing a kinematic
imitation in the simulator. The third and fourth rows show the final imitation result obtained by
our method of constrained exploration, in the simulator, and on the Hoap-2 robot. b) The duration
that the executed imitation was balanced (out of a total of T = 63) shown vs the trial number. The
random exploration trials are shown in red, and the inferred imitative trials are shown in blue. Note
that the balanced duration rapidly rises and by the 15th inferred sequence is able to perform the
imitation without falling.

natural partial observability of a human demonstrator and a human learner, we provide our inference
algorithm with noisy measurements of the kinematic state only (not the torques). A probabilistic
constraint dictates that the final joint velocities be very close to zero.

4.2 Dynamic Humanoid Imitation

We applied our algorithms for nonparametric action selection, model learning, and constrained ex-
ploration to the problem of full-body dynamic imitation in a humanoid robot. The experiment con-
sisted of a humanoid demonstrator performing motions such as squatting and standing on one leg.
Due to space limitations only briefly describe the experiments, for more details see [6].

First, the demonstrators’ kinematics were obtained using a commercially available retroreflective
marker-based optical motion capture system based on inverse kinematics (IK). The IK skeletal model
of the human was restricted to have the same degrees of freedom as the Fujitsu Hoap-2 humanoid
robot.

Representing humanoid motion using a full kinematic configuration is problematic (due to the curse
of dimensionality). Fortunately with respect to a wide class of motion (such as walking, kicking,
squatting) the full number of degrees of freedom (25 in the Hoap-2) is highly redundant. For sim-
plicity here, we use linear principal components analysis (PCA) but we are investigating the use of
non-linear embedding techniques. Using PCA we were able to represent the observed instructor’s
kinematics in a compact four-dimensional space, thus forming the first four dimensions of the state
space.

The goal of the experiment is to perform dynamic imitation, i.e. considering the dynamic balance
involved in stably imitating the human demonstrator. Dynamic balance is considered using a sensor-
based model. The Hoap-2 robot’s sensors provide measurements of the angular rotation gt (via
a gyroscope in the torso) and foot pressure ft (at eight points on the feet) every 1 millisecond.
By computing four differential features of the pressure sensors, and extracting the two horizontal
gyroscope axis, we form a six dimensional representation of the dynamic state of the robot.



Concatenating the four dimensional kinematic state and the six dimensional dynamic state we form
the full ten dimensional state representation st. Robot actions at are then simply points in the
embedded kinematic space. We bootstrap the forward model (of robot kinematics and dynamics) by
first performing random exploration (body babbling) about the instructor’s trajectory. Once we have
collected sufficient data (around 20 trials) we learn an initial forward model. Subsequently we place
a probabilistic constraint on the dynamic configuration of the robot (using a tight, central Gaussian
distribution around zero angular velocity, and zero pressure differentials). Using this constraint on
dynamics we perform constrained exploration, until we obtain a stable motion for the Hoap-2 which
imitates the human motion. The results we obtained in imitating a difficult one-legged balance
motion are shown in Fig. 4.

5 Conclusion

Our results demonstrate that probabilistic inference and learning techniques can be used to success-
fully acquire new behaviors in complex robotic systems such as a humanoid robot. In particular,
we showed how a nonparametric model of forward dynamics can be learned from constrained ex-
ploration and used to infer actions for imitating a teacher while simultaneously taking the imitator’s
dynamics into account.

There exists a large body of previous work on robotic imitation learning (see, for example
[2, 5, 14, 19]). Some rely on producing imitative behaviors using nonlinear dynamical systems
(e.g., [8]) while others focus on biologically motivated algorithms (e.g., [3]). In the field of re-
inforcement learning, techniques such as inverse reinforcement learning [12] and apprenticeship
learning [1] have been proposed to learn controllers for complex systems based on observing an
expert and learning their reward function. However, the role of this type of expert and that of our
human demonstrator must be distinguished. In the former case, the teacher is directly controlling the
artificial system. In the imitation learning paradigm, one can only observe the teacher controlling
their own body. Further, despite kinematic similarities between the human and humanoid robot, the
dynamic properties of the robot and human are very different.

Finally, the fact that our approach is based on inference in graphical models confers two major
advantages: (1) we can continue to leverage algorithmic advances in the rapidly developing area of
inference in graphical models, and (2) the approach promises generalization to graphical models of
more complex systems such as with semi-Markov dynamics and hierarchical systems.
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