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Abstract— A long cherished goal in artificial intelligence has
been the ability to endow a robot with the capacity to learn
and generalize skills from watching a human teacher. Such
an ability to learn by imitation has remained hard to achieve
due to a number of factors, including the problem of learning
in high-dimensional spaces and the problem of uncertainty.
In this paper, we propose a new probabilistic approach to
the problem of teaching a high degree-of-freedom robot (in
particular, a humanoid robot) flexible and generalizable skills
via imitation of a human teacher. The robot uses inference
in a graphical model to learn sensor-based dynamics and
infer a stable plan from a teacher’s demonstration of an
action. The novel contribution of this work is a method for
learning a nonparametric policy which generalizes a fixed action
plan to operate over a continuous space of task variation. A
notable feature of the approach is that it does not require
any knowledge of the physics of the robot or the environment.
By leveraging advances in probabilistic inference and Gaussian
process regression, the method produces a nonparametric policy
for sensor-based feedback control in continuous state and action
spaces. We present experimental and simulation results using
a Fujitsu HOAP-2 humanoid robot demonstrating imitation-
based learning of a task involving lifting objects of different
weights from a single human demonstration.

I. INTRODUCTION

Science fiction stories are rife with instances of “robot
see, robot do”: a robot watches a human perform an action
and in a short amount of time, replicates and generalizes the
behavior in a myriad different situations.

Learning by imitation, long recognized as a crucial means
for skill and general knowledge transfer between humans,
only recently has become an active research area in robotics
and machine learning communities. Robotics researchers
have become increasingly interested in learning by imita-
tion (also known as “learning from demonstration”) as an
attractive alternative to manually programming robots.

Researchers in artificial intelligence and robotics have long
sought to achieve this goal [2], [27] but have had to confront
a number of problems including learning in the presence
of uncertainty, learning in high-dimensional spaces, lack of
processing speed for real-time computation, etc.

Early work of Kuniyoshi, Inaba and Inoue termed the
approach “learning by watching” [27]. Kuniyoshi et al.
identified key components necessary for any such imitation
learning system. These include functional units for segmen-
tation and recognition of human actions and motion, as well
as an algorithm for constructing an imitative motor plan for
a given robotic platform.

Fig. 1. The HOAP-2 humanoid robot performing the task of lifting and
offering an object. The motion was learned via imitating by observing a
human demonstrator perform the desired motion. Using an inference-based
motion planning algorithm a stable imitative motion is obtained.

Researchers have since studied imitation learning in robots
using a wide array of techniques from many sub-fields of
electrical engineering, mechanical engineering, and computer
science. Some recent examples on robotic imitation learning
include, for example [11], [16], [18], [22], [28]. Some
approaches rely on producing imitative behaviors using non-
linear dynamical systems (e.g., [10]) while others focus on
biologically motivated algorithms (e.g., [3]), or in achieving
goal-directed behaviors (e.g., [4], [5], [24]).

In this paper, we propose a new probabilistic approach
to learning by imitation in high degree-of-freedom robots
(e.g., humanoid robots). The key contribution of this work
is a method for learning a nonparametric policy which uses
sensory feedback to generalize pre-computed action plans
(based on fixed tasks) to a broader space of task variation.
The goal is to obtain imitative behaviors which are reactive
to different task and/or environmental conditions such a
lifting a heavier object than originally planned. Although
this paper builds upon previously published algorithms which
yield fixed action plans [8], [9], the problem which we seek
to solve here is distinct. For completeness this paper sum-
marizes the planning and dimensionality reduction methods
used, however for full details we refer the reader to [8], [9].

Our approach leverages recent advances in probabilistic
reasoning, learning, and dimensionality reduction, and allows
a humanoid robot to learn nonparametric policies directly
from human demonstrations. The proposed method does not
rely on any physics-based models (e.g., mass and rotational
inertia properties) of the robot or environment; rather, a
sensor-based dynamics model is learned during the course
of imitation and used for inferring a stable plan (sequence
of actions). This plan is then used to bootstrap the learning of
a nonparametric policy that generalizes the imitated behavior
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Fig. 2. Example latent kinematic space used in policy learning. Postures
are represented in a low-dimensional 2D latent space to afford a compact
representation of both robot state and control signal. The state history of
a stabilized task plan is shown (clockwise with time represented by the
change from blue to red). Example kinematic configurations are shown and
indicate the corresponding points in the 2D space.

to a range of conditions not encountered in the teacher
demonstration.

We illustrate our approach in the context of a task where
the robot has to learn to lift and move objects of differing
properties (such as mass), given only the following:

• A human teacher who demonstrates the task with a
single object

• A kinematic correspondence between the human
demonstrator and the humanoid robot

We show, using a simulated Fujitsu HOAP-2 humanoid
robot, that the approach allows the robot to learn a non-
parametric (Gaussian process) policy for lifting objects of
different weights given only a single human demonstration.
Unlike methods such as [9] which plan a sequence of
imitative actions to be executed open-loop, this paper seeks
to addresses the issue of using closed-loop sensory feedback
to generalize to novel situations and environments.

II. POLICY LEARNING VIA IMITATION

A. Problem definition

Consider an agent in an environment whose state is
characterized by the continuous (real-valued) multivariate
vector st ∈ S = Rds . We assume that the state is either
directly observable or can be robustly estimated from sensory
observations using a temporal filtering algorithm. At each
discrete point in time t the agent must select an action
a ∈ A = Rda to execute. An action in our setting is also a
continuous multivariate vector. Motivated by the humanoid
learning problem described in Section I we assume that
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Fig. 3. Dynamics sensor feedback during motion optimization. Sensory
signals are shown for each trial of the imitation-based planning algorithm.
Dynamically unstable trials are shown in red, while stable ones are shown in
green. The dynamics signals corresponding to the inferred plan are shown in
blue. The upper plot demonstrates the (simulated) gyroscope signal which
measures the angular rate of rotation about the X-axis (a vector emanating
from mid-torso out to the right side of the robot). The lower plot shows the
(simulated) center of pressure (COP) in the frontal-backward direction.

the stochastic transition function based on the conditional
probability distribution P (st+1|st,at) is unknown.

For some particular parameterized task T (θ) we assume
there exists a function FT (·) : S → A which defines a policy
mapping states to actions. Additionally we assume a known
initial state s1 ∈ S, and a known terminal or goal state
indicator G : S → {0, 1}. I.e. when the agent observes
that G(st) = 1 execution stops. By starting in state s1

and selecting actions according to the policy function FT (·)
the agent visits the sequence of states (s1, s2, ··, sT ) where
G(sT ) = 1.

We consider a particular case of policies in which the
actions taken maximize the (expected) likelihood of the state
sequence with respect to a (given) probabilistic constraint
model PC(·|·):

L =
T∏

t=1

PC(ct|st) (1)

A task T (θ) is parameterized by a set of environmental
or task configuration variables that dictate the underlying
transition function. A valid policy FT (·) is defined as one
which solves the task T for some valid range of values
for the parameter θ. This framework assumes that the task
parameters are not directly observable by the agent during
execution and therefore not represented in the robot’s state
st. Note that the policy function FT (·) does not depend on
a particular value of the parameter θ. Rather, information
about θ is encoded by the sensory components of the state
representation. Consider the problem of a humanoid robot
lifting objects with varying density. The intrinsic task param-
eter θ would represent the object’s mass, however the policy
would be represented in terms of the sensory consequences
of the various torques generated by picking up a heavier or
lighter object. This framework also handles multivariate task
parameters, for instance allowing for variation in both the
mass and moments of inertia of an object.
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The approach relies on the presence of an offline imitation-
based planning method which given the observed demon-
stration by the teacher and a task parameter setting θi can
formulate a sequence of actions to be executed open-loop
which (approximately) maximizes the expected value of
Equation 1. As has been shown in [9], an inference based
method leveraging a sensor-based dynamic balance model
can efficiently plan such a sequence of actions which will
produce dynamically stable imitative motions in the HOAP-2
humanoid robot.

The goal of this paper is to learn the unknown policy
function FT (·) from a small number of planning iterations
using a few values of θi. We solve this problem by treating
the policy as as an unobserved function and modeling it via
the posterior distribution:

P
(
FT (·)(s)|s, {Hi}M

i=1

)
(2)

where {Hi}M
i=1 represents a history of past data obtained by

the robot via exploration (see Section III for details).
This policy will then generate actions which successfully

perform the task T for a large range of task parameter
values. Here a successful trial is defined by one that reaches
the end/goal condition while maximizing the expected state
sequence likelihood. An example of a parameterized task
is shown being performed by a Fujitsu HOAP-2 humanoid
robot in Figure 1. We refer to this example motion as a
motivating example throughout the paper, and demonstrate
the results of our proposed method in Section IV.

The desire to minimize re-planning is motivated by the fact
that for many applications planning is only practical to be
done offline, while we want the robot to be instantly reactive
to many different task situations. While many fast, online
planning algorithms exist (for example see [21]), typically
such methods do not allow for learning a new environment
without complex physics modeling. Additionally, many such
methods are based on deterministic algorithms which can be
very sensitive to estimation errors of environmental param-
eters.

B. Latent posture space and dynamics representation

The reduction of the space S × A is crucially important
for the proposed use of nonparametric policy learning via
the use of Gaussian processes. Representing and learning
the policy in the full 25 × 25 dimensional space (ignoring
dynamics) is obviously intractable. Fortunately, with respect
to a certain policy, the full number of degrees of freedom (25
in the HOAP-2) is highly redundant. Additionally, dynamics
relevant to a particular task can be efficiently represented by
low-dimensional sensor-based quantities.

Linear principal components analysis (PCA) is used to
represent a latent posture space but other non-linear em-
bedding techniques (such as the GPLVM [15]) may allow
for further reduction in dimensionality. In this paper we
use a linear projection of the full posture space onto a two
dimensional space as shown in Figure 2. The choice of two
dimensions is based on the fact that the first two principal
components contain 98% of the total kinematic variance
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Fig. 4. Nonparametric policy example. A simple nonparametric policy
is depicted for visualization purposes. In this case a policy is learned in a
kinematic 2D space. The policy is learned from a single history of states
and actions (shown in red). The resulting actions (green arrows) are shown
by evaluating the learned policy on a grid of states (blue points). Leveraging
the full posterior distribution over actions afforded by the Gaussian process
model, actions are only shown if the entropy of the action distribution is
below some threshold.
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Fig. 5. A learned policy for generalizing an object lifting motion.
For the task depicted in Fig. 1 results of a policy trained on two action
sequences corresponding to 0.0 kg and 1.0 kg objects are shown. The policy
can sufficiently generalize to a novel and unknown object mass of 0.5kg. In
this example the learned policy maps a 3D state representation of two latent
posture dimensions and a foot sensor based dynamics dimension to actions
in the 2D latent posture space. The sequence of states for the 0.0kg case
are shown changing from blue to green, for 1.0kg changing from green to
red, and the policy result is shown in magenta.
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in the original motion. Assuming positional control of the
servos, the reduced posture space is also used to represent
actions.

In order to respond to the particular environment dictated
by the task parameter θ the latent kinematic state is aug-
mented by a set of sensory state variable which allow for
reacting properly for θ. Note that this does not mean that θ
is directly observed. Rather in the lifting of different mass
objects example, we utilize a foot-pressure sensor derived
quantity closely related to the center of pressure (COP). The
HOAP-2 humanoid robot has four pressure sensors on each
corner of each foot. Thus the front to back COP (for dual
contact point motions) is simply obtained by subtracting the
sum of the back four sensors from the sum of the front
four. In concert with the two dimensional posture space,
the COP measurement can detect a different mass load on
the robot. Thus for the results described in Section IV the
learned policy maps a 3D state (2 kinematic + 1 dynamics
dimensions) to 2D action. An example of dynamics-sensory
observations is shown in Figure 3.

C. Inference based planning

We briefly describe the inference-based motion imitative
planning method used in this paper. In principle many
other approaches to planning could be employed. Recently
other probabilistic and Bayesian approaches to sensorimo-
tor learning have been proposed allow a robot to learn
from empirical exploration. For example Bayesian locally
weighted regression (BLWR) [23] and the randomly varying
coefficient (RVC) [6] model tackle the problem of efficiently
performing nonparameteric regression. Ko et al. proposed
using a hybrid approach to combining both a physics-based
model and learning based on an “unscented” approximation
of the Gaussian process posterior [12]. However, none of
these approaches consider the problem of planning imitative
behaviors or have been demonstrated in the humanoid do-
main. Deterministic motion planning algorithms (for example
see [13], [20]) are in widespread use, but require a complex
physics-based model to specified in advance.

For details of the planning method used see [8], [9]. The
method produces a sequence of actions (HOAP-2 motor com-
mands) which yield a dynamically stable imitative motion.

First, pose estimates are obtained for the human demon-
strator using an optical motion capture system. The central
idea of the method is to iteratively infer and learn a dynamic
Bayesian network representation of the dynamics, and to
probabilistically constrain actions (via a sensor based repre-
sentation of the dynamics). This approach allows for finding
dynamically stable motions without requiring a priori knowl-
edge of the robot’s dynamic properties. Using a constrained
exploration algorithm a probabilistic sensorimotor prediction
model is learned directly from actuation and sensory infor-
mation. The dynamics feedback used for planning the object
lifting task is shown in Figure 3.

In the examples presented in this paper, the planner is
able to obtain an imitative sequence of actions a∗1:T with high
posterior likelihood given the human pose estimates e1:T and

a set of dynamics constraint targets c1:T :

a∗1:T = argmaxa1:T
P (a1:T |e1:T , c1:T ). (3)

We set the constraint targets to regions of the dynamics state
space for which the robot is empirically stable. Specifically
we represent the dynamics state of the robot using two axes
of the torso gyroscope, and a set of features of the eight foot
pressure sensors located on the bottom of the feet. These
features can be thought of as generalizing the commonly used
center of pressure (COP) measure. The dynamics constraint
targets c1:T are all set to be highly peaked at zero torso
rotation and zero pressure difference. Note that while these
targets could be time-dependent, for this application we use
a single target value across all time steps. Also we note
that additional objectives can be incorporated by describing
them as probabilistic constraints in the form of a likelihood
function P (c′|s) which is conditioned on any candidate state.

III. NONPARAMETRIC POLICY LEARNING FROM
IMITATIVE PLANS

We now propose a method for learning a policy for a large
space task parameters from a small number of imitative plans
(generated off-line). Our method begins by simply executing
each plan aθi

1:T associated with a particular instance of the
parameterized task. By recording the sequence of states
visited by executing each plan the history Hi = {aθi

1:T , sθi

1:T }
is formed. The goal is to represent the unknown policy func-
tion using the information contained in the set of histories
{Hi}M

i=1. Gaussian process priors provide an elegant way to
approach the unknown policy function learning in a Bayesian
manner.

Gaussian process regression [7], [14], [17], [26] is used to
model the posterior of the output of the policy function. As
Gaussian process regression is generally restricted to dealing
with univariate functions we simply model each dimension
of the action space A independently. Specifically the j-th
dimension of the action a(j) is modeled as being normally
distributed given a input state vector s.

P
(
FT (θ)(s)(j)|s

)
= N

(
a(j);µ(j)

∗ ,Λ(j)
∗

)
(4)

For convenience let SH be a column oriented matrix of all
states in the set of histories. For instance if the state space is
reduced to three dimensions, then SH is a 3×MT matrix.
Likewise AH is a matrix of all actions where the action in
the j-th column was taken while in the state corresponding
to the j-th column of SH . The mean and variance of the
action distribution are functions of the n × n covariance
matrix K(SH , SH) where n = MT denotes the number of
values in the history set. The covariance matrix is defined
by the covariance (or kernel) function k(·, ·). The squared
exponential kernel is also referred to as the radial basis
function (RBF) kernel:

k(xp,xq) = σ2
f exp

(
−1

2
(xp − xq)′Σ−1

l (xp − xq)
)

+σ2
nδpq

(5)
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Fig. 6. Online policy vs planned actions and sensor readings. All plots compare the results of the 0.0kg plan (red) and the offline planned actions for
0.5kg (blue) with the result of executing the learned policy (green). (a) The state in the first latent dimension, (b) the actions executed (for the first latent
dimension, (c) the X-axis gyroscope sensor readings, (d) the front to back center of pressure (COP) difference.

The squared exponential kernel, due to its modeling flexi-
bility is considered an appropriate choice when one doesn’t
have domain specific knowledge about how the output of the
process (co)varies as a function of its inputs. The exact form
of the kernel is selected by setting the kernel hyperparameters
Σ−1

l , σ2
f , σ2

n representing the length scales of each of the
inputs (which determine how sensitive an output dimension is
to changes in each input dimension), the noise-free function
variance, and the additive process noise variance respectively.
Hyperparameters were optimized using a standard scaled
conjugate gradient (SCG) approach, maximizing the log
likelihood of the data {Hi}M

i=1 over these hyperparameters.
In principle local minima can be a problem with SCG on
non-convex functions, yet empirically we found that multiple
runs with different initial parameters all converged to very
similar hyper-parameters.

By evaluating the kernel function for each pair of data
points in SH , we can compute the kernel matrix K(SH , SH)
and its inverse necessary for the predicted posterior mean:

µ
(j)
∗ = K(s, SH)ΨA

(j)
H (6)

and variance:

Λ(j)
∗ = K(s, s)−K(s, SH)ΨK(SH , s) (7)

where:

Ψ =
[
K(SH , SH) + σ2

nI
]−1

. (8)

The Gaussian process equations above require O(n3)
operations which can prohibitive when either the number
of histories or the motion length grows large. Fortunately,
important recent advances have been made in approximate or
“sparse” GPs which can accommodate much larger quantities
of data [1], [14], [19].

An illustrative example of a nonparametric policy obtained
from a single history is shown in Figure 4.

IV. RESULTS

We present the results of policy learning for the task
of a humanoid robot lifting a variety of different objects.
The task parameter θ is simply the mass of the object in
kilograms. The object grasping problem is simplified by not
considering objects of different sizes or with different grasp
requirements. The results presented here utilize the Webots
dynamic simulator [25].

The first step was to record motion capture data of
the human demonstrator performing the desired lifting and
offering action on an object (a basketball with approximate
mass 0.5kg). From this data a latent posture space is induced
as described in Section II-B. Time is discretized and actions
are planned for the robot at regular 32 millisecond intervals
for the approximately 7 second duration motion. Using the
technique mentioned in Section II-C we obtain a sequence of
actions optimized for the case where θ = 0. After execution
(shown in Figure 7(a)) the history {a0

1:T , s0
1:T } is obtained

for the successful performance of the task.
We then experimented with different mass objects, and

observed that with objects of mass greater than 0.4 kg
the open-loop plan a0

1:T is no longer stable (as shown in
Figure7(b)). We then re-plan for the θ = 1.0 kg case and
learn a nonparametric policy based on the method described
in Section II-C. Empirical results show that the proposed
policy learning method is able to generalize information from
the open-loop plans to provide feedback based control for
novel task parameters. For example the learned policy can
be used to control the robot in the 0.5 kg case as shown
in Figure 7(c). In fact we found that the learned policy was
stable and successfully completed motions for θ between 0
and 1.2 kg. Above 1.2 kg the initial pose selected is no longer
statically stable, and the torque necessary to simply hold an
object of this mass with arms fully extended exceeds the
specifications for the ankle servo motors. This suggests that
our method was able to generalize the task to the full range
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Fig. 7. Policy results for task generalization. (a) Webots simulation of the HOAP-2 robot executing the actions planned in the case of no extra mass.
(b) The unstable result of using the actions planned for no extra mass in the case of a 0.5kg mass. Note that for technical reasons the extra mass is not
visibly rendered. (c) The stable result of using the learned policy to generalize to the novel 0.5kg extra mass condition. Note that this result is visually
indistinguishable from the first row, see text for a quantitative comparison. (d) For comparison the execution of the action plan for 0.5 is also shown to
demonstrate the similarity between the on-line policy and the off-line planning result.

of feasible variability within this task. We also found that
the dynamics feedback signals obtained during policy use
matched closely with those from the offline motion planner
shown in Figure 6. Analytic analysis of our method is beyond
the scope of this paper. This is due in part to the fact that
many properties of Gaussian Processes cannot be currently
described analytically. We refer the interested reader to [1]
for a survey of the issues in providing bounds on Gaussian
Process errors.

To illustrate the need for a non-linear regression model
which can fit data locally we also attempted to represent the
policy using a linear-least squares regression model. On a
set of hold out data, a linear fit to the policy data shown
in Figure 5 yielded a mean squared error (MSE) of 0.339
whereas the GP regression fits the data with an MSE of
0.023.

Note that our reliance on the simulator is based only on
practical concerns such as wear on the robot during learning
and the amount of human interaction required. Importantly,
note that we do not access the internal dynamic state of
the simulator or perform expensive computation between
simulation steps. Additionally, we note that in our previous
work we have found the Webots simulator to be very accurate
in simulating real-world dynamics. For instance we were able
to learn complex motion plans [8] (such as balancing on
one leg) via the simulator and directly transfer the result to
the HOAP-2 robot. Thus we strongly believe that the results
we have obtained here have significance in terms or real-

world performance. We are in the process of developing the
evaluation of a learned policy in real-time on the HOAP-2
humanoid robot. This is mainly a programming challenge
as we have determined that the evaluation of the GP based
policy can be indeed be performed in realtime.

V. CONCLUSION

We have proposed a new probabilistic technique for
imitation-based learning in high degree-of-freedom robots.
The approach combines dimensionality reduction, inference-
based planning, and Gaussian process regression to produce
a nonparametric policy that significantly generalizes the plan
produced from the teacher demonstration. The technique
allows sensory feedback-based control to be learned in high-
dimensional continuous state and action spaces given a few
teacher demonstrations. We demonstrated the viability of the
approach using a simulated Fujitsu HOAP-2 humanoid robot
in the context of a task involving lifting objects of different
weights. Given a single demonstration by a human, the robot
was able to learn a policy that generalized across different
weights.

A number of issues remain to be addressed. For example,
how effective and stable are the policies learned in simulation
when executed by the robot? Earlier results with inference-
based planning seem to suggest that some results carry over
but others require some re-learning on the robot. How does
the approach scale to more complex behaviors, for example,
those involving locomotion? To what extent is the general-
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ization provided by the Gaussian process policy appropriate
for various behaviors? Can the approach be extended to
hierarchical policies for solving more complex tasks, such
as picking an object, manipulating it, and transporting it
to a different location? Our current efforts are focused on
addressing some of these issues.
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