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Predictive coding is a unifying framework for understanding redundancy reduction
and efficient coding in the nervous system. By transmitting only the unpredicted
portions of an incoming sensory signal, predictive coding allows the nervous
system to reduce redundancy and make full use of the limited dynamic range of
neurons. Starting with the hypothesis of efficient coding as a design principle in the
sensory system, predictive coding provides a functional explanation for a range of
neural responses and many aspects of brain organization. The lateral and temporal
antagonism in receptive fields in the retina and lateral geniculate nucleus occur
naturally as a consequence of predictive coding of natural images. In the higher
visual system, predictive coding provides an explanation for oriented receptive
fields and contextual effects as well as the hierarchical reciprocally connected orga-
nization of the cortex. Predictive coding has also been found to be consistent with
a variety of neurophysiological and psychophysical data obtained from different
areas of the brain.  2011 John Wiley & Sons, Ltd. WIREs Cogn Sci 2011 DOI: 10.1002/wcs.142

INTRODUCTION

Natural signals are highly redundant. This
redundancy arises from the tendency toward

spatial and temporal uniformity in these signals.
For example, neighboring pixel intensities in natural
images tend to be positively correlated because natural
shapes extend over finite spatial regions; similarly,
pixel intensities tend to be correlated over time because
objects persist in time.1–3 A direct representation
of the raw image by the activity of an array of
sensory receptors would thus be very inefficient. It
has long been suggested based on the information
theoretic considerations4–6 that the role of early
sensory processing is to reduce redundancy and
recode the sensory input into an efficient form. One
important model for achieving this goal is predictive
coding.7 Predictive coding postulates that neural
networks learn the statistical regularities inherent in
the natural world and reduce redundancy by removing
the predictable components of the input, transmitting
only what is not predictable (the residual errors in
prediction).

Predictive coding provides a functional expla-
nation for center–surround response properties and
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biphasic temporal antagonism of cells in the retina7–10

and lateral geniculate nucleus (LGN).11,12 In the pre-
dictive coding model, neural circuits in the retina/LGN
actively predict the value of local intensity from a lin-
ear weighted sum of nearby values in space or preced-
ing input values in time. Cells in these circuits convey
not the raw image intensity, but the difference between
the predicted value and the actual intensity. This
decorrelates (or whitens)7,9 the input signals by flat-
tening the temporal and spatial power spectra, thereby
reducing output redundancy. The resulting difference
signal has a much smaller dynamic range [when the
input signal-to-noise ratio (SNR) is high], and is there-
fore more economical for transmission through a
visual pathway that has limited dynamic range.6,9,13

Neurons in the primary visual cortex (V1)
respond to bars and edges at preferred orienta-
tions14–16 whereas neurons in areas V2 and V4
respond to more complex shapes and contour
features.17,18 Neurons in medial superior temporal
area (MST) respond to visual motion.19,20 These
response selectivities can be understood in terms of
hierarchical predictive coding of natural inputs. For
example, motivated by the fact that the visual system
is hierarchically organized with reciprocal connections
between cortical areas, Rao and Ballard21 proposed
a hierarchical neural network in which top-down
feedback connections from higher order visual cortical
areas carry predictions of lower-level neural activities,
while the bottom-up connections convey the residual
errors in prediction.22,23 After training a model
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network on image patches taken from natural scenes,
they found that model neurons developed receptive
field properties similar to those in V1, including
oriented receptive fields, end-stopping, and other
contextual effects. Jehee et al.24 proposed a predictive
coding model that captured the visual selectivity of
MST neurons to optic flow when exposed to visual
motion resulting from translation movements in space.

In this review article, we formally introduce pre-
dictive coding within an efficient coding framework
and illustrate the concept using the examples of pre-
dictive coding in space and time. We then review how
predictive coding has been used to understand the
responses of neurons in various regions of the nervous
system. We conclude with a brief summary and dis-
cussion of other experimental support for predictive
coding in the brain.

PREDICTIVE CODING: MODEL
AND TWO ILLUSTRATIVE EXAMPLES

General Framework
The underlying assumption of predictive coding is
that the visual system tries to learn an internal model
of the external environment and uses this model to
actively predict incoming signals.21,25,26 This can be
formalized using a generative model P(I|r), which is
the probability of an image I given a set of hidden
internal model parameters r (represented by firing
rates in a network of neurons). For a given input
image I, the neural system is assumed to select the
parameters r that maximize the posterior probability
P(r|I) = P(I|r)P(r)/P(I) obtained using Bayes theorem,
where P(I) is a normalizing constant. Using an infor-
mation theoretic point of view, let H be the overall
description length (or information entropy), i.e., the
sum of coding length H1 = − log P(I|r) of predicting I
using r, and the length H2 = − log P(r) of the param-
eters r themselves. Minimizing the total description
length H = − log P(I|r) − log P(r) is thus equivalent
to maximizing the posterior probability of the param-
eters under the predictive coding assumption. There-
fore, the so-called minimum description length (MDL)
framework27,28 can be seen to be formally equivalent
to Bayesian maximum a posteriori (MAP) estimation.

Other coding schemes such as sparse coding16,29

and independent component analysis (ICA)30 can also
be understood under the above-mentioned Bayesian/
MDL framework by imposing appropriate constraints
on P(I|r) and P(r). In sparse coding, for example the
dimensionality of r is typically chosen to be larger
than that of I, i.e., the input is projected into a higher-
dimensional space, and P(r) is chosen to encourage

sparseness in r, i.e., most elements of r are zero (see
Supporting Information for more details). In ICA, the
goal is to make the elements of r as statistically inde-
pendent as possible; in the case of Bell and Sejnowski’s
ICA algorithm,30 this is achieved by assuming that r
has the same dimensionality as I and minimizing the
mutual information between the components of r (see
Ref 31 for further details).

Predictive Coding in Space
Natural images are usually composed of many finite
areas with relatively uniform intensity values. As a
result, neighboring pixel intensities in most natural
images tend to be spatially correlated over short dis-
tances. Figure 1(b) (blue curve) illustrates this using
the spatial autocorrelation function measured from a
natural scene (Figure 1(a)). The intensity at a par-
ticular pixel can thus be predicted based on the
intensities surrounding it, allowing the input to be
efficiently coded as the residual error between the
actual intensity and the prediction based on the sur-
rounding pixels. Suppose we would like to predict the
pixel intensity x0 based on the neighboring intensi-
ties x−N, . . . , x−1, x1, . . . , xN at 2N different locations
−N, . . . , −1,1, . . . , N. Then, the statistically optimal
linear prediction of x0 is given by a weighted average
of the 2N neighboring samples, i.e.,

x̂0 =
∑

i

wi xi. (1)

To compute the optimal weights wi, suppose
there are k such pixels x0, we can stack these pixels as
a k × 1 vector A. For each of these pixels, the neigh-
boring intensities x−N, . . . , x−1, x1, . . . , xN are used as
the rows of a k × 2N matrix B. We use the vector W
to represent the weights wi. Then, the weights W can
be obtained by minimizing the total prediction error
over all pixels:

E = ‖A − BW‖2/2, (2)

where ‖Y‖ denotes the magnitude of vector Y. It can
be shown that minimizing the error E is equivalent
to finding the MDL representation of the raw input
image assuming that the intrinsic noise is Gaussian
(Supporting Information). Taking the derivative of
E with respect to W, we have:

∂E
∂W

= −BT(A − BW) = 0

BTA = BTBW. (3)
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FIGURE 1 | Predictive coding in space. (a) An example natural image (Reprinted with permission from Ref 32. Copyright 1998 Royal Society
Publishing), shown here in logarithmic scale for better visualization of pixel values. (b) Blue curve: pixel intensities measured along a horizontal line
of the image in (a). Red curve: the residual error between the actual intensity and predicted intensity from neighboring pixels. (c) Blue curve:
autocorrelation function of intensities shown in the blue curve in (b). Red curve: autocorrelation function of the residual error shown in the red curve
in (b). (d) Optimal spatial weighting coefficients W calculated from Eq. 2 for this example.

Solving for the optimal linear weights, we
obtain:

W = (BTB)−1BTA. (4)

Figure 1(d) shows the optimal linear weights W
derived using this linear prediction model. By subtract-
ing the linear prediction from the actual pixel inten-
sity, the residual response r = x0 − x̂0 (Figure 1(b),
red curve) decorrelates the original image (compare
Figure 1(c), red curve to the blue curve), thereby reduc-
ing redundancy.

Predictive Coding in Time
Predictive coding can also be applied to the time
domain. Figure 2(a) shows a time-varying intensity
profile measured from a fixed pixel in a natural movie.
The corresponding autocorrelation function is shown

in the blue curve of Figure 2(b). Given that tempo-
rally close intensities tend to be positively correlated,
one can predict the current intensity as a weighted
linear combination of preceding intensities using an
analysis similar to the one used above for spatial
predictive coding, except for one notable difference:
spatial predictive coding is based on intensities from
all surrounding neighbors, whereas temporal predic-
tive coding is causal and based only on the past history
of intensities. Figure 2(c) shows the optimal temporal
weighting function derived from the temporal version
of Eq. (1) with j = −1, . . . , −N over time. As expected,
the dynamic range and the autocorrelation of the resid-
ual response are dramatically reduced after predictive
coding (shown as red curves in Figure 2(a) and (b)).
More sophisticated models of predictive coding in
time rely on learning dynamic spatiotemporal mod-
els of the inputs and perform some form of optimal
statistical filtering such as Kalman filtering of inputs.33
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FIGURE 2 | Predictive coding in time. (a) Blue curve: time-varying intensities measured at a fixed pixel of a natural video (Reprinted with
permission from Ref 32. Copyright 1998 Royal Society Publishing). The sampling frequency is 50 frames/second. Red curve: the residual error between
the actual intensity and predicted intensity from past time steps. (b) Blue curve: autocorrelation function of intensities shown in the blue curve in (a).
Red curve: autocorrelation function of the residual error shown in the red curve in (a). (c) Optimal temporal weighting coefficients for this example.

PREDICTIVE CODING IN THE
NERVOUS SYSTEM

Predictive Coding in the Retina
In this section, we discuss how predictive coding pro-
vides an explanation for both the spatial and temporal
receptive fields found in the retina.8–10,7,13 The under-
lying assumption is that the retina tries to build an
efficient (e.g., MDL) representation of the visual scene.

For the case of spatial receptive fields, consider
an array of neurons in the retina, each of which
receives an excitatory input from the center and an
inhibitory input from the surround. The response at
the center of the receptive field is estimated from
a linear weighted average of surrounding intensity
values.1–3 By subtracting this prediction from the
actual intensity via lateral inhibition, the range of the
neural response can be minimized as demonstrated
in the section on Predictive Coding in Space. The
shape of the weighting function that minimizes the
error between the estimated intensity value and its
actual value was derived in the section on Predictive
Coding in Space and closely resembles the classical
center–surround receptive fields of retinal ganglion
cells (Figure 3(a); compare with Figure 1(d)).

Srinivasan et al.7 showed that the weighting
function also depends on the SNR of the input signal.
When SNR is low, the intensity value at the center
can no longer be estimated reliably from its nearest
neighbors. Instead, better estimation can be achieved
by recruiting larger groups of surrounding points in
order to cancel out the statistically independent noise.
Thus, one expects the surround of the spatial receptive
field to become weaker and more diffuse as SNR
decreases (Figure 3(b)). Remarkably, this predicted
phenomenon was observed by Srinivasan et al. in
first-order interneurons in the compound eye of the
fly (Figure 3(c)). Similarly, in the temporal domain, as
SNR decreases, one expects more pixels from the past
to be used in generating a prediction (Figure 3(d)).
This was also observed in the fly eye (Figure 3(e)).

An efficient visual encoder should learn the
statistical regularities of the input image and adapt
its encoding strategy accordingly.35,36 The center–
surround antagonism can be viewed as adaptation to
spatial image correlations. However, animals may also
encounter environments where neighboring image
pixels do not share similar intensities. Under these
conditions, the intensity at the center can no longer
be predicted using a simple weighted average of the
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FIGURE 3 | Spatial and temporal predictive coding in the retina. (a) Classic center–surround receptive field found in the retina. (Reprinted with
permission from Ref 34. Copyright 1992 Sinauer Assoicates) Compare to the center–surround weighting profile in Figure 1(d). (b) Shape of the
receptive field depends on the signal-to-noise ratio (SNR). (Upper) Higher SNR; (Lower) Lower SNR. (c) Comparison of theoretically optimal (dotted
curves) with experimentally measured (solid curves) receptive fields of large monopolar cells in the compound eye of the fly. (Upper) SNR = 1.45 at
luminance 10 cd m−2. (Lower) SNR = 0.58 at luminance 1.26 cd m2. Note that the receptive field is more diffuse for the lower SNR as predicted in
(b), although the effect is not as pronounced. (d) Effect of SNR on the temporal weight profile. (Upper) Low SNR; (Lower) High SNR. (e) Temporal
receptive fields of large monopolar cells in the fly’s eye for increasing SNR (top left to bottom right) (Reprinted with permission from Ref 7). Note that
the receptive field is inverted compared to (d). As predicted by the theoretical result in (d), the temporal receptive field sharpens as SNR increases.

surround. Hosoya et al.13 proposed that adaptation
to different visual scenes with varying correlational
structures should lead to marked changes in predictive
coding in retinal ganglion cells. In their experiments,
they exposed ganglion cells in the salamander retina
to two types of stimuli: a flickering uniform field with
perfect positive correlation between all image points
(environment A) and a flickering checkerboard pat-
tern with perfect negative correlation between two
sets of image regions (environment B) (Figure 4(a)
and (b)). They found that after adaptation to environ-
ment B (negatively correlated stimuli), the receptive
field profile of a typical ganglion cell flattened and the
cell became equally sensitive to the two checkerboard
regions (Figure 4(d)). The result of this adaptation

was that the cell became less sensitive to checker-
board stimuli by a factor of about 0.57 and became
more sensitive to uniform stimuli by a factor of 1.4
(recall that under normal circumstances, uniform stim-
uli elicit little or no response from a ganglion cell).
These results indicate that retinal ganglion cells rapidly
adapt to become less sensitive to stimuli they have been
exposed to; in the process, they become more respon-
sive to other stimuli (i.e., novel stimuli), as expected
from predictive coding theory.

Besides spatial correlation, there is also a high
degree of chromatic correlation among pixels in nat-
ural images. In species with color vision, there are
several types of retinal photoreceptors that are sen-
sitive to different wavelengths of light. For example,
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FIGURE 4 | Adaptation to spatial image statistics. (a) Stimulus with two checkerboard regions X and Y. (b) Time-varying stimuli used to test
adaptation in retinal ganglion cells. Environment A has perfect positive correlation between all image points, whereas environment B has perfect
negative correlation between X and Y regions. An uncorrelated probe stimulus P lasting 1.5 seconds was used to test the cell’s spatiotemporal
receptive field after adapting to environment A or B for 13.5 seconds. (c) Spatial receptive field of a ganglion cell from salamander retina.
(d) Sensitivity of the ganglion cell in response to P for stimulus regions X and Y after adaptation to environment A (left) or B (right) (Reprinted with
permission from Ref 13. Copyright 2005 Nature Publishing Group).

humans have three types of photoreceptors, known as
S, M, and L for short, medium, and long wavelengths,
respectively. The responses of those photoreceptors
are often correlated because their spectral sensitivities
overlap. Thus the M-cone response can be used to
predict the L-cone response, and the L- and M-cone
responses can together be used to predict the S-cone
response. Correspondingly, one sees color-opponent
receptive fields in the retina. For example, one type of
color-opponent retinal ganglion cell receives excita-
tory input from L-cone (‘red’) receptors in the center
and inhibitory input from M-cone (‘green’) receptors
in the surround. Thus, the color-opponent (red–green)
and blue–(red + green) channels in the retina might
reflect predictive coding in the chromatic domain,
similar to the predictive coding observed in the spatial
and temporal domains.10

Predictive Coding in the LGN
Dong, Dan, Atick, and Reid11,12 have suggested
that the LGN performs predictive coding by tem-
porally whitening (decorrelating) the signal from the
retina.9,35,73 As time-varying natural image sequences

(or ‘movies’) exhibit strong positive inter-frame
correlations,3 the intensity value of a particular pixel
at time t can be predicted from the weighted sum
of intensity values at preceding time points (see the
section on Predictive Coding in Time):

O(t) =
∫

K(t, t′)S(t′)dt′ = K∗S, (5)

where the temporal kernel K(t, t′) is the temporal
receptive field of the LGN neuron and S(t) is the input
stimulus. The output response O(t) is a linear sum of
preceding inputs S(.) with weighting function K(t, .).
This is similar to the formulation in Eq. (1) except
that the summation is replaced by an integral.

Unlike the section Predictive Coding in Space
where we derived the optimal linear filter by mini-
mizing the error in the spatial or temporal domain,
here we follow Dong and Atick and illustrate an alter-
native approach to deriving the optimal filter in the
frequency domain using the equivalent goal of decor-
relation. Suppose the natural movie has a temporal
correlation matrix R:

R = R(t, t′) = 〈S(t)S(t′)〉 (6)
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where the brackets denote averaging over different
pairs of frames. We would like the output to be
decorrelated:

〈O(t)O(t′)〉 = δ(t, t′), (7)

where δ(t, t′) is the Kronecker δ function. We can then
solve for the optimal receptive field K by substitut-
ing Eq. 5 into Eq. 7 and converting to the frequency
domain:

K(ω)R(ω)K∗(ω) = 1

|K(ω)| = 1√
R(ω)

, (8)

where ω is the temporal frequency. Here, we assume
R and K are time-invariant, i.e., K(t, t′) = K(t − t′) and
R(t, t′) = R(t − t′).

The receptive field or filter K decorrelates both
signal and noise; since R(ω) = S2(ω) + η2, where the
first term is the signal power and the second term
is the noise power. At high temporal frequency, the
noise is significant and the filter will amplify noise
relative to the signal. To code efficiently in the pres-
ence of noise, Dong and Atick3 suggested a filter that
suppresses noise at high frequencies and decorrelates
when the signal-to-noise ratio is high. This new filter is
the product of the decorrelation filter in Eq. 8 and the
optimal noise suppressing filter (also called a Wiener
filter) M = S2/(S2 + η2) = (R − η2)/R:

|K(ω)| = 1√
R(ω)

R(ω) − η2

R(ω)
. (9)

Dong and Atick3 measured the power spectrum
of natural movies and, assuming temporal white noise,
derived R(ω) as:

R(ω) ≈ 1
ω2

+ 1
ω2

c
, (10)

where ωc is the noise frequency. Substituting (10)
into (9), they obtained the predicted optimal temporal
filter of LGN cells:

|K(ω)| = ω

(1 + ω2/ω2
c )

3
2

. (11)

As shown in Figure 5(a), this predicted optimal
filter compares remarkably well with physiological
data from the LGN.37 Figure 5(b) shows the tempo-
ral receptive field derived by Dong and Atick from
the filter in Figure 5(a) (after placing appropriate con-
straints such as causality). This receptive field is similar
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FIGURE 5 | Temporal predictive coding in the lateral geniculate
nucleus (LGN). (a) Comparison between theoretically predicted
temporal tuning curve (solid curve) and experimental data (points) in
the LGN.37 The predicted curve is generated from Eq.11 with
ωc = 5.5 Hz. (b) Temporal receptive field derived from (a) (Reprinted
with permission from Ref 12. Copyright 1995 Informa PLC). Note the
similarity to the temporal predictive coding filter in Figure 2(c).

to the one we obtained for our example in Figure 2
and illustrates how a weighted average of past pixel
values (negative part of the curve) is subtracted from a
weighted average of recent pixel values (positive part
of the curve), consistent with the general framework
of predictive coding.

The above analysis assumes that spatial and tem-
poral decorrelations are accomplished separately: the
retina is assumed to reduce most of the spatial correla-
tions, whereas the LGN removes much of the temporal
redundancy in the input image. Such a model, orig-
inally suggested by Dong and Atick,12 is consistent
with the findings that the temporal bandpass filtering
done by the retina is essentially flat (i.e., not much tem-
poral decorrelation) and the spatial receptive fields of
LGN cells are very similar to those of retina cells (i.e.,
not much additional spatial processing at the LGN).

Predictive Coding in the Visual Cortex
Predictive coding has also been used to provide expla-
nations for important receptive field properties in the
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visual cortex such as oriented receptive fields and
contextual effects. It has been used to ascribe an
active computational role to the reciprocal connec-
tions between the different hierarchically organized
cortical areas.

In the predictive coding view of the visual cortex
as proposed by Rao and Ballard,21 the cortex is
modeled as a hierarchical network, with higher level
units attempting to predict the responses of units
in the next lower level via feedback connections
(Figure 6(a), lower arrows). The inspiration for
the model comes from neurophysiological evidence
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FIGURE 6 | Hierarchical predictive coding model of the visual
cortex. (a) General architecture of the hierarchical predictive coding
model. Higher level units attempt to predict the responses of units in
the next lower level via feedback connections. Lower level units sent
back the error between the higher level predictions and the actual
activity through feedforward connections. This residual error signal is
then used by the predictive estimator (PE) at each level to correct the
higher level estimations of input signal. (b) Components of a PE unit.
Each unit consists of several kinds of neurons: feedforward neurons
encoding the synaptic weights UT , predictor-estimator neurons
maintaining the current estimate r of the input signal, feedback neurons
encoding U and carrying the prediction f (Ur) to lower level, and
error-detecting neurons computing the discrepancy (r − r td) between
the current prediction r and its top-down prediction r td from a yet
higher level. (c) An example of three-level hierarchical network. Three
image patches at level 0 are processed by three level 1 PE units. The
estimates from these three level 1 units are input to a single level 2 unit.
This convergence effectively increases the receptive field size of neurons
as one ascends the hierarchy. (Reprinted with permission from Ref 21.
Copyright 1999 Nature Publishing Group).

suggesting that the feedback connections from high
level areas play an active role in shaping the tuning
properties of lower level areas.38–40 In the model,
lower level units send back the discrepancies between
the top-down predictions and the actual activity
through feedforward connections22,23 (Figure 6(a),
upper arrows). These discrepancies or residual error
signals are then used by the predictive estimator (PE)
at each level to correct the higher level estimates
of the input signal and generate the next prediction
(Figure 6(b)). Lower levels have smaller spatial (and
possibly temporal) receptive fields, whereas higher
levels have larger receptive fields because a higher level
unit predicts and estimates signal properties at a larger
scale by combining the responses of several lower level
units (three in the example shown in Figure 6(c)).
Thus, the effective receptive field size of units at the
highest level could span the entire input image.

By assuming a probabilistic hierarchical gen-
erative model for images (Supporting Information),
Rao and Ballard derived the dynamics of the hier-
archical network and learning rules for the synap-
tic connections between two levels, allowing them
to model interactions in the LGN–V1–V2 feedback
loop21 (similar models have since been suggested for
the LGN–V1 circuit41,24 and the middle temporal
(MT)–MST circuit24). Specifically, the activity in a
lower area, for example V1, is represented by a vec-
tor of firing rates r. The output of a higher area, for
example V2, conveys a ‘top-down’ prediction rtd of
the expected neural responses in the lower area. As
shown in Figure 6(b), the feedforward input from the
lower to the higher area carries the residual error r −
rtd which is used by higher area neurons to correct its
local estimate and generate a new prediction rtd (see
Supporting Information for details). The bottom-up
error UT(I − f (Ur)) and the top-down prediction error
(rtd − r) are weighted by the inverse of their corre-
sponding noise variances: the larger the noise variance
in the source of information, the smaller the weight
given to that source, consistent with the principle of
Kalman filtering.33,42 This dynamics, along with the
associated learning rule for the synaptic weights U
at each level, can be shown to maximize the poste-
rior probability of the observed input data (which is
equivalent to the MDL principle; see Supporting Infor-
mation). The feedforward weight vectors (rows of UT)
can be shown to effectively determine the receptive
fields of the feedforward model neurons.16,29 When
trained on natural images, these weight vectors resem-
ble oriented filters or Gabor wavelets43,16,29 which
have been used to model the receptive fields of simple
cells in V1, while the higher level synaptic weights
represent more complex features21 (Figure 7).
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Level 1 (with sparse prior)

FIGURE 7 | Receptive field properties of feedforward neurons in the hierarchical predictive coding model. (a) Natural images used for training the
hierarchical model. Several thousand natural image patches were extracted from these five images. (b) Feedforward synaptic weights of level 1
neurons learned from the natural images in (a) using a Gaussian prior. These synaptic weights determine the receptive field properties of the
feedforward neurons. (c) Feedforward synaptic weights of level 2 neurons. These weights resemble various combinations of the synaptic weights in
level 1. (d) Localized feedforward synaptic weights (rows in basis matrix UT ) learned by using a sigmoidal nonlinear generative model and a sparse
kurtotic prior distribution. Values can be zero (always represented by the same gray level), negative (inhibitory, black regions) and positive
(excitatory, bright regions). (Reprinted with permission from Ref 21. Copyright 1999 Nature Publishing Group).

An important attribute of the hierarchical pre-
dictive coding model is that it provides a functional
explanation for extraclassical receptive field effects
(also called contextual effects) in the visual cortex.
Such contextual effects have been reported in several
cortical areas including V1,14,44 V2,45,46 V4,47 and
MT.48 For many neurons in these areas, when the
properties of a stimulus in the center, such as orienta-
tion, velocity, or direction of motion, match those in
the surrounding regions, the responses are suppressed

or eliminated compared to when the same stimulus
is shown alone in the center. Figure 8(a) (solid line)
shows an example of such an effect, known as ‘end-
stopping’, in a complex cell in layer 2/3 of cat primary
visual cortex. A vigorous response is suppressed as the
length of an optimally oriented bar grows beyond the
classical receptive field.

Rao and Ballard21 postulated that extraclassi-
cal receptive field effects in the visual cortex may
result from predictive coding of natural images but
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FIGURE 8 | Extraclassical receptive field effects in the hierarchical predictive coding model. (a) End-stopping in a layer 2/3 complex cell in cat
striate cortex. Tuning curves are shown for inactivation of layer 6 (dotted curve) and for the control case (solid curve). (b) Tuning curve of lower level
model neuron after inactivation of feedback from higher level (dotted curve) and for the control case (solid curve). (c) Extraclassical receptive field
effect (contextual modulation). Responses of an error-detecting model neuron for oriented texture stimuli with center and surround are the same
(dotted line) versus different (solid line) orientations. (Reprinted with permission from Ref 21. Copyright 1999 Nature Publishing Group).

along more complex dimensions than pixel intensities
as is the case in the retina and LGN. In particular,
when the stimulus properties in the center match those
in the surround, the responses from higher level neu-
rons (which process a larger region) can predict the
response of the central neuron, resulting in small resid-
ual errors. Although the neurons in layer 2/3 are the
ones that send feedforward connections to a higher
area, these would correspond to the error-detecting
neurons in the model and thus can be expected
to show end-stopping and other extraclassical
effects.

To test this hypothesis, a hierarchical predictive
coding model network was first trained on natural
images and then exposed to oriented bars of vari-
ous lengths. The error-detecting neurons at the lower

level displayed end-stopping: their responses were
suppressed when the bar extended beyond the clas-
sical receptive field (Figure 8(b), solid curve) because
the prediction from the higher level was more accurate
for the longer bar than the shorter bar. Analogous to
the case of spatial predictive coding in the retina, the
longer bar provides the necessary context for the net-
work to predict the bar in the center. The feedback
predictions from the higher area become progressively
more accurate with longer bars, bringing the predic-
tion errors closer to zero. As shown in dotted curve of
Figure 8(b), elimination of predictive feedback caused
the error-detecting neurons to continue to respond
robustly to longer bars, similar to neural responses in
the cat visual cortex when layer 6 was inactivated, pos-
sibly removing feedback from V2 (Figure 8(a), dotted
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curve). The error-detecting neurons in the predictive
coding model also exhibited other contextual effects:
for example, when presented with an oriented texture
stimulus in the center and a texture stimulus of a differ-
ent orientation in the surround,49 the error-detecting
neurons developed a large positive difference over time
(Figure 8(c)), resembling contextual effects observed
in V1 neurons.49 Other V1 response properties, such
as cross-orientation suppression and orientation con-
trast facilitation, can also be explained within the
predictive coding framework.50,51

Recent imaging studies indicate that activity
increases in higher object-processing areas result in
concurrent reduction of responses in lower areas such
as V1,52,53 consistent with the predictions of the hier-
archical predictive coding model. The hierarchical
model, however, does not rule out the possibility
that predictive inhibitory feedback may also arise
from local recurrent feedback connections16,54 in a
manner similar to the retina. In fact, the dynam-
ics of the network can be rewritten to replace the
feedback connections from a higher area with lateral
inhibition.29

Predictive coding can also be used to model
motion processing in the visual cortex. Neurons in
area MST, which are tuned to optic flow such as pla-
nar, radial, and circular motion, receive inputs from
MT area, where neurons code for local visual motion
(magnitude and direction).19,20 Jehee et al.24 applied
the hierarchical predictive coding model to explain
receptive field properties in MST. Visual motion inputs
extracted from natural image sequences, resembling
MT inputs to MST, were used to train the model. After
training, the model developed preferred responses to
translation and expansion, which are components of
optic flow, similar to MST neurons (Figure 9).

The predictive coding models described above
assume a strict underlying hierarchy. However, the
basic idea can be extended to allow more compli-
cated graph topologies as well. For example, Rao
and Ballard55 suggested a predictive coding model
that achieves visual invariance by factoring an input
image into two representations, one representing
object-specific properties and the other representing
spatial transformations. These representations are
maintained in two separate networks, an ‘object’
network and a ‘transformation’ network. Transforma-
tions such as translations of the object are predicted
by the transformation network, allowing the object
representation to remain stable (see Refs 55–57 for
details). The two networks in such a predictive cod-
ing model are reminiscent of the dichotomy between
the dorsal and ventral pathways in the primate visual
cortex.

FIGURE 9 | Learned feedforward receptive fields in a predictive
coding model of the middle temporal–medial superior temporal area
(MT–MST) circuit. Receptive fields show preferred responses to
translation and expansion similar to MST neurons. (Reprinted with
permission from Ref 24. Copyright 2006 Elsevier).

Predictive Coding in Other Areas
The principle of predictive coding has also been
applied to the auditory system58,59 hippocampus,60

ventral midbrain,61 frontal cortex,62 and many other
brain areas.50,53,63–67 For example, in the auditory
system, predictive coding offers a way to efficiently
encode the input sound signal s(t) using a linear pre-
diction of the form s(t) = �iriui(t), where ri is the
firing rate of neuron i and ui(t) are a set of synaptic
weights (or basis functions). Smith and Lewicki58
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showed a striking similarity between the optimal
weights ui(t) learned from natural sounds and the
impulse response function of cat auditory nerve fibers.
Similarly, Mehta60 has posited a predictive coding
mechanism for the hippocampus based on the obser-
vation that the spatial receptive fields in the rat
hippocampus undergo significant and rapid anticipa-
tory changes as the rat repeatedly traverses a track. In
summary, although the detailed neural representation
may vary from area to area, the principle of predictive
coding provides a unifying functional explanation for
a variety of neural phenomena by assuming that the
brain actively predicts the hidden causes of incoming
sensory information.

Recent Developments in Predictive Coding
Spratling50 has recently shown that predictive coding
can be implemented using a particular form of biased
competition in which neurons compete to receive
inputs. In such a predictive-coding/biased-competition
(PC/BC) model, the residual error is computed via
lateral inhibitory connections. Feedforward and feed-
back connections between different areas of the brain
can be both excitatory, instead of inhibitory cortical
feedback as in Rao and Ballard.21 The PC/BC model
has also been shown to account for visual attention as
well as extraclassical properties such cross-orientation
suppression and orientation contrast facilitation.51

Friston et al.68 have explored how neural
dynamics can be understood in terms of predic-
tion errors and have shown how hidden causes in
a hierarchical dynamical model of the world can be
estimated by optimizing free-energy. Their model can
account for perceptual inference68 as well as complex
cognitive phenomena such as, decision making and
motor control.69,70

CONCLUSION

Predictive coding provides a unifying principle for
understanding the receptive field properties and

neuroanatomical features of the mammalian brain.
Predictive coding models characterize the function of
the cortex as learning an efficient internal represen-
tation r of incoming sensory signals I by minimizing
prediction errors subject to particular constraints on
r. These constraints, which perform ‘regularization’,
can take the form of a penalty on the length of
r (MDL principle), sparseness of r, or statistical
independence of r. By transmitting only the unpre-
dicted parts of an signal to the next level, predictive
coding reduces the dynamic range needed to code
for the incoming signal, allowing the signal to be
efficiently transmitted along neural pathways with
limited dynamic range. Predictive coding also ascribes
a prominent computational role to feedback connec-
tions between cortical areas, positing that these con-
nections convey predictions of expected neural activity
from higher to lower levels. The feedforward connec-
tions are assumed to convey the residual prediction
errors.

There exists strong experimental evidence for
predictive coding in the early visual system.7,9,13

Higher up in the visual pathway, both classical16,30

and extraclassical21 receptive field properties in V1
as well as receptive fields in MST24 have been
explained using predictive coding. However, it is
not yet clear from neurophysiological experiments
whether feedback connections indeed carry predic-
tions and feedforward connections the residual errors,
although results from neuroimaging studies52,53

appear to be consistent with the residual error detec-
tion hypothesis. Many cognitive phenomena such as
binocular rivalry,67 mismatch negativity,71 and repeti-
tion suppression72 can be explained within the context
of predictive coding. Finally, predictive coding has also
proved useful in understanding N-methyl-d-aspartate
(NMDA)-dependent plasticity.60 Taken together,
these examples suggest that predictive coding may
be a general computational strategy employed by the
brain.
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