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Abstract— We tackle the problem of learning imitative whole-
body motions in a humanoid robot using probabilistic inference
in Bayesian networks. Our inference-based approach affords
a straightforward method to exploit rich yet uncertain prior
information obtained from human motion capture data. Dynamic
imitation implies that the robot must interact with its environ-
ment and account for forces such as gravity and inertia during
imitation. Rather than explicitly modeling these forces and the
body of the humanoid as in traditional approaches, we show that
stable imitative motion can be achieved by learning a sensor-
based representation of dynamic balance. Bayesian networks
provide a sound theoretical framework for combining prior
kinematic information (from observing a human demonstrator)
with prior dynamic information (based on previous experience)
to model and subsequently infer motions which, with high
probability, will be dynamically stable. By posing the problem
as one of inference in a Bayesian network, we show that
methods developed for approximate inference can be leveraged
to efficiently perform inference of actions. Additionally, by using
nonparametric inference and a nonparametric (Gaussian process)
forward model, our approach does not make any strong assump-
tions about the physical environment or the mass and inertial
properties of the humanoid robot. We propose an iterative,
probabilistically constrained algorithm for exploring the space
of motor commands and show that the algorithm can quickly
discover dynamically stable actions for whole-body imitation of
human motion. Experimental results based on simulation and
subsequent execution by a HOAP-2 humanoid robot demonstrate
that our algorithm is able to imitate a human performing actions
such as squatting and a one-legged balance.

I. INTRODUCTION

Imitation learning presents a promising approach to the
problem of enabling complex behavior learning in humanoid
robots. Learning through imitation provides the robot with
strong prior information by observing a skilled instructor (of-
ten assumed to be a human demonstrator). This paper presents
a model for exploiting this prior information about whole-body
motions gathered from observing a human performance of the
motion. Although the observation of the teacher is informative,
there is a high degree of uncertainty in how the robot can
and should imitate. Our model accounts for some of these
sources of uncertainty including: noisy and missing kinematic
estimates of the teacher, mapping ambiguities between the
human and robot kinematic spaces, and lastly, the large
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Fig. 1. Graphical model for dynamically constrained imitation. A
dynamic Bayesian network (DBN) used to infer imitative motions depicts
a set of variables with arrows representing conditional dependencies between
variables. Variables which are observed (evidence variables) are shaded blue.
Latent action variables at are modeled as generating both human kinematic
postures mt and the robot kinematic configuration kt. The modeled dynamic
configuration of the robot dt, augments the kinematic information to form the
full state of the robot st. All conditional dependencies are shown between the
first and second time slices. Subsequent times slices are shown with the arrows
based on the state variable st, revealing the simple first order Markovian
structure of the DBN.

uncertainty due to the effect of physical forces imparted on
the robot during imitation.

Bayesian networks provide a sound theoretical approach to
incorporating prior, yet uncertain information. Thus we pose
the problem of finding dynamically balanced imitative motions
as one of learning and inference in a Bayesian network. This
also allows us to utilize additional prior information crucial
for achieving stability: a probabilistic sensor-based model
of dynamic balance. Despite compelling advances in solv-
ing complex continuous partially observable Markov decision
problems (POMDPs) [1], [2] we pose the problem as one of
inference also for a pragmatic reason: to leverage and evaluate
recent approximate inference approaches to efficiently solve
problems that have previously been regarded as intractable.
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II. RELATED WORK

Efficiently generating dynamically balanced biped and hu-
manoid motion has long been considered a difficult and
important research problem. Our overall approach is similar in
spirit to Yamane and Nakamura’s dynamics filter [3]. However,
unlike their approach which requires a physics-based model
of the robot, our approach is model-free in the sense of not
requiring any knowledge of dynamic properties such as mass
or moment of inertia. Other approaches based on the zero-
moment point (ZMP) [4], [5] or inverted pendulum models
[6] also require accurate knowledge of physical parameters
to achieve stable motion. On the other hand, sensor-based or
adaptive approaches are typically aimed at stabilization within
a particular gait model [7], [8] and do not easily generalize
to other classes of whole-body motion. Finally, none of these
models specify a probabilistic method for the incorporation of
uncertain prior information from human kinematic estimates.

Inverse reinforcement learning [9] and apprenticeship learn-
ing [10] have been proposed to learn controllers for complex
systems based on observing an expert and learning their reward
function. However, the role of this type of expert and that
of our human demonstrator must be distinguished. In the
former case the teacher is directly controlling the artificial
system. In the imitation learning paradigm, one can only
observe the teacher controlling their own body. Further, despite
kinematic similarities between the human and humanoid robot,
the dynamic properties of the robot and human are very
different and must be accounted for in the learning process.

There exists a large body of other work on imitation learning
using a variety of approaches, ranging from using nonlinear
dynamical systems for imitation [11] to imitating arm motions
using biologically motivated methods [12]. We refer the reader
to these and related literature [13]–[16] for more details and
alternate approaches to the imitation problem.

III. PROBABILISTIC DYNAMIC BALANCE MODEL

Our approach is based on the dynamic Bayesian network
(DBN) shown in Figure 1. Imitative motions are modeled
as a generative process: a single sequence of actions at

generates both the human demonstrator’s kinematic postures
(mt) as well as the humanoid robot’s kinematic postures (kt).
We assume that a length T sequence of human kinematic
estimates has been observed. In our experiments, we use
a commercially available retroreflective marker-based optical
motion capture system to obtain estimates of human joint
angles through inverse kinematics (IK). The IK skeletal model
of the human was restricted to have the same degrees of
freedom as the Fujitsu HOAP-2 humanoid robot. This affords
a trivial mapping (adjusting only for zero position and sign)
between the two kinematic spaces.

Representing humanoid motion in the full kinematic config-
uration space is problematic due to the large number of degrees
of freedom and the well known curse of dimensionality.
Fortunately, with respect to a wide class of motions (such as
walking, kicking, bowing), the full number of degrees of free-
dom (25 in the HOAP-2) is highly redundant. Dimensionality
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Fig. 2. Latent posture space representation. Using principal components
analysis, a high degree of freedom motion (here, a one-legged balance) is
embedded in a two-dimensional space. The blue line shows the sequence of
postures represented in the low-dimensional space. For selected points along
the trajectory, an image of the robot posture is shown using a purely kinematic
simulation. For efficiency, we perform inference in the low-dimensional latent
space to find a dynamically stable sequence of actions which imitate an
observed behavior.

reduction techniques can be profitably used to represent high-
dimensional data in compact low-dimensional latent spaces.
For simplicity, we use linear principal components analysis
(PCA) but other non-linear embedding techniques (such as the
GPLVM [17]) may be worth exploring for representing wider
classes of motion using fewer dimensions [18].

Using the estimated kinematic motion from several demon-
strations of the motion or behavior, we form a matrix C from
the d principal component vectors of the posture space. The
matrix C represents a linear embedding of the original high-
dimensional points in a d-dimensional space. An illustrative
example showing a one legged balancing motion embedded in
a two-dimensional space is shown in Figure 2.

We can thus describe the human’s posture mt as a linear
function of the latent action at with assumed additive Gaussian
noise (vm):

mt = Cat + vm , vm ∼ N (µm,Σm + Σw) . (1)

The parameters of the Gaussian noise process denoted µm,Σm

characterize the inherent noise in joint estimates from the
motion capture system. In practice these can be estimated
using maximum likelihood on calibration data obtained using
a calibration rig. The Σw parameter determines how much
the human’s motion is likely to deviate from the shared latent
action representation. This non-isotropic diagonal covariance
allows for differentially weighting the deviation of joints in
the human and the humanoid. For example it may be more
important to reproduce arm movements more exactly than the
ankle joint motions.

The second major component of our model can be likened
to a dynamics constraint. Rather than placing constraints
on moments or center of mass, which require complex and



precisely tuned physical models, we leverage sensors which
measure quantities closely related to dynamic stability. In this
work, we utilize observations from a torso gyroscope (gt)
and pressure sensors on the feet(ft). Our framework easily
generalizes to include other sensors and sources of information
such as motion estimates based on visual information and/or
proximity sensors. We represent the dynamics of the robot at
time t using the following sensor-derived components:

dt = [gx
t gy

t p1
t · · pk

t ]′ , pi
t = φi(ft) (2)

where gx
t and gy

t represent the angular velocity of the hu-
manoid torso with respect to the x and y axis respectively
(rotation about the z (upward) axis is omitted as we are only
concerned here with the force of gravity), and the variables
pi

t represent foot pressure differences extracted by a set of
features φi from the eight pressure points (along four sides
of each foot) of the vector ft. In our experiments, we used
four linear features: 1) front - rear (both feet), 2) sum of
left foot readings - sum of right foot readings, 3) left foot:
right - left side, 4) right foot: right - left side. More robust,
non-linear features of the foot pressure points could also
be easily incorporated. The HOAP-2 robot’s sensors provide
measurements of the angular rotation gt and foot pressure
ft every 1 millisecond. Because of inherent sensor noise, we
utilize a Gaussian model P (gt, ft|dt) and consider dt partially
observable.

We introduce the variable bt to indicate if the robot will
be dynamically balanced conditioned on the current dynamics
configuration dt. In practice, because we always want to
enforce this condition for all t, we observe that bt = 1. In
this sense, the variable bt is simply a notational device and is
akin to a dummy child of dt in belief propagation [19] used
for indicating evidence. Note that although we want to highly
constrain dt, we also want to maintain a belief state over
the dynamics configuration due to uncertainty in the forward
model and the sensor observation model. For this reason, we
do not want to simply ”observe” dt as a target stable dynamics
configuration.

We constrain the dynamics configuration using highly
peaked (small variance) central Gaussians about each of the
components in dt:

P (bt|dt) ∝ bt N
(
gx

t ; 0, σ2
x

)
N

(
gy

t ; 0, σ2
y

) k∏
i

N
(
pi

t; 0, σ2
pi

)
.

(3)
where σ2

x, σ2
y , σ2

pi
are the variances of the x and y axis angular

velocities, and the i-th foot pressure features.
We represent the kinematic state kt using the same d-

dimensional latent space as the action at. Thus, the kinematic
observation model (the kt to ot link in the Bayesian network),
which gives the probability of the observation (joint encoder
position) θt given a particular kinematic posture kt, is given
by:

θt = Ckt + vk , vk ∼ N
(
0, σ2

k

)
(4)

The model also includes a prior over the initial action
P (a1), and temporal action “prior” P (at+1|a). The temporal

action prior term is useful for indicating our preference that
actions (for both the human and robot) be smoothly varying.
We model this using a Gaussian relationship:

at+1 = at + va , va ∼ N
(
0, σ2

a

)
. (5)

Before discussing the temporal forward model, we introduce
the notation st = [kt;dt]′ which allows us to write the
forward dynamics compactly as the conditional probability
model P (st+1|st,at).

IV. NONPARAMETRIC FORWARD MODEL LEARNING

We now turn to the problem of forward prediction of
the dynamics state component dt+1 given the previous state
(consisting of both kinematics and dynamics components)
st and an action command at. Given our definitions of
kinematic and dynamic state, we cannot assume a linear
forward relationship nor do we have a physics-based model
to linearize about. Thus our approach is based on learning
the forward model P (st+1|st,at) directly from empirical data
collected from trials on the robot. Gaussian processes have
been shown to be very powerful in learning stochastic non-
linear relationships directly from empirical data [20]. As no
finite set of parameters can describe a Gaussian process, this
method is called nonparametric.

Empirical data gathered from exploration trials form a set
of tuples D ⊂ S × A × S constructed via samples of the
mapping ([̂st; ât] → ŝt+1). The inferred state ŝt is found using
maximum likelihood estimation from the single observation
ot (alternatively, one could use the expectation maximization
(EM) algorithm to incorporate estimation into model learning
but single time-slice maximum likelihood state estimation was
found to be sufficient here). Note that the tuples in D are
time invariant; thus, the subscript t is dropped. From D, we
construct the process input data matrix by concatenating state
and action vectors into Din (also called the design matrix).
The output data matrix Dout contains the subsequent state
estimates.

Although a linear model can fairly accurately model
P (kt|st,at) for much of the state and action spaces, we
choose to model this nonparametrically for two reasons: (1)
to obtain a unified method for learning P (st+1|st,at), and
(2) around certain state configurations with large inertial or
gravitation forces, the forward kinematics may be non-linear.
We want our model to be able to capture this potentially non-
linear relationship.

Gaussian process regression computes a predictive poste-
rior of the i-th dimension of the output, s(i)

t+1 as normally
distributed given a multivariate input vector [st;at].

P (s(i)
t+1|st,at) = N

(
µ

(i)
∗ ,Λ(i)

∗ ; s(i)
t+1

)
(6)

The mean and variance of the predictive distribution are
functions of the covariance matrix K(Din, Din) which is n×n
where n denotes the number of values in the data set. The
covariance matrix is defined by the covariance (or kernel)
function k(·, ·). Different choices exist for the kernel function,



but for simplicity here we use the common squared exponential
kernel. The squared exponential kernel is also referred to as
the radial basis function (RBF) kernel:

k(xp,xq) = σ2
f exp

(
−1

2
(xp − xq)′Σ−1

l (xp − xq)
)

+ σ2
nδpq

(7)
The squared exponential kernel, due to its modeling flexibility
is considered an appropriate choice when one doesn’t have
domain specific knowledge about how the output of the
process (co)varies as a function of its inputs. The exact form
of the kernel is selected by setting the kernel hyperparameters
Σ−1

l , σ2
f , σ2

n representing the length scales of each of the inputs
(which determine how sensitive an output dimension is to
changes in each input dimension), the noise free variance, and
the additive process noise variance respectively. Hyperparame-
ters were optimized using a standard scaled conjugate gradient
approach, maximizing the log likelihood of the data D over
these hyperparameters.

By evaluating the kernel function for each pair of data, we
can compute the kernel matrix K(Din, Din) and its inverse
necessary for the predicted posterior mean:

µ
(i)
∗ = K([st;at], Din)

[
K(Din, Din) + σ2

nI
]−1

D
(i)
out (8)

and variance:

Λ(i)
∗ = K([st;at], [st;at])−

K([st;at], Din)
[
K(Din, Din) + σ2

nI
]−1

K(Din, [st;at]) (9)

.
Although the kernel and its inverse can be precomputed,

the O(n3) time necessary for matrix inversion can become too
costly in our case. Exploration of the world gains additional
data after each trial which must be then incorporated into
the model. A simple approach that appears effective given
our experience is to simply represent the kernel matrix using
a random subset of the data (when the number of data
points grows over about 300). Recently, several approaches
have tackled the problem of large kernel matrices, either by
applying heuristics to select a subset of the data points [21]
or by low-rank approximations of the kernel matrix [22].

V. NONPARAMETRIC ACTION INFERENCE

We now present an algorithm for action selection based on
belief propagation [19] within the graphical model shown in
Figure 1. The result of performing belief propagation is a set
of marginal beliefs B(x) = P (x| E) where E is the set of all
observed variables. Belief propagation was originally restricted
to tree structured graphical models with discrete variables.
Recent advances in machine learning have broadened the
applicability to general graph structures [23] and to continuous
variables in undirected graph structures [24], [25].

The inference approach we adopt is most similar to the
NBP [25] method. While NBP is formulated for inference
in a Markov random field (MRF) model, our approach uses
Pearl’s notation for belief propagation in directed Bayesian
networks. We note that this difference is only semantic, and

adopted out of convenience as any Bayesian network can
be represented as a MRF, or more generally a factor graph
[26]. Belief propagation formulated for a Bayesian network is
more convenient in our setting given the natural conditional
semantics of the forward and observation models.

Belief propagation (BP) computes marginals by passing
messages along the edges of the graphical model. Messages
are in the form of distributions over single variables. On
BP iteration n, parent i of variable x would pass to x the
distribution πn

x(ui). Likewise, child j of variable x would
pass to x the distribution λn

yj
(x). In a discrete (finite) space,

messages are easily represented by multinomial distributions.
For arbitrary continuous densities, accurately and efficiently
representing messages is in itself a challenge. Seeking gener-
ality and the ability to handle complex multi-modal distribu-
tions, we use a nonparametric approach based on a collection
of weighted kernel functions. Specifically, (as in the NBP
approach [25]) we used Gaussian kernels whose parameters
can be efficiently estimated. Although one might then view
this message distribution as being parameterized, the result
when many kernels functions are used is akin to a sample
based representation (as in particle filters or the condensation
algorithm [27]).

Belief propagation computes a belief distribution Bn(x)
based on the product of two sets of messages πn(x) and
λn(x), which represent the information coming from neigh-
boring parent and children variable nodes respectively:

P (x|E) = Bn(x) = λn(x)πn(x) (10)

.
Although the product of two mixtures of Gaussians is also a

mixture of Gaussians, the complexity of computing the product
grows exponentially when performed repeatedly. Thus, we
approximate products of messages based on the technique
of multiscale sampling and multiplication of pairs of mixture
components [28].

Following [19], we treat observed and hidden variables in
the graph identically by allowing a node x to send itself
the message λ?(x). If the node is observed, we model this
message as a Dirac delta distribution about the observed
data point, and a uniform distribution otherwise. This “self
message” is considered in the product of all messages from
the m children (denoted yj) of X:

λn(x) = λ?(x)
m∏
j

λn
yj

(x). (11)

Messages from parent variables are incorporated by integrat-
ing the conditional probability of x over all possible values of
the k parents multiplied by the probability of that combination
of values as evaluated in the corresponding messages from a
parent node:

πn(x) =
∫
u1

··
∫
uk

P (x|u1, ··,uk)
k∏
i

πn
x(ui)du1··k. (12)



Messages are updated according to the following two equa-
tions:

λn′

x (uj) =
∫
x

λn(x)
∫
u1

··
∫
uj−1

∫
uj+1

··
∫
uk

·

P (x|u1, ··,uk)
∏
i 6=j

πn
x(ui)du1:k/j (13)

πn′

yj
(x) = πn(x)λn

x(x)
∏
i 6=j

λn
yi

(x) (14)

Although the output of the Gaussian process is a normal dis-
tribution for a particular input value, the integrals in Equations
12 and 13 are not analytically solvable in closed form when
conditionals such as P (st+1|st,at) are Gaussian processes.
Thus, in the case of messages involving the forward model,
we apply a sample based (Monte-Carlo) technique to estimate
the outgoing messages or beliefs. For example, in Equation
12, we draw samples from each parent distribution πn

x(ui),
and based on means and variances obtained from the Gaussian
process model, we use an efficient kernel bandwidth estimation
technique discussed in [25] to form the message πn(x). While
in theory this approach requires a number of particles that
is exponential in the dimensionality, our results show that
using around 1000-1500 samples in a four dimensional latent
space is sufficient. As future work, we intend to experiment
with moment-matching methods which have been shown to be
able to approximate the Gaussian process when the inputs are
drawn from a normal distribution [29]. This has the potential
to further reduce inference time.

The computation of λn′

x (uj) as shown in Equation 13
is approached similarly. However, in this case, we have to
integrate over an output variable of the Gaussian process as
well. Rather than “invert” the Gaussian process we simply
learn backward Gaussian processes for mapping backward in
time, and to the action variable at given states st+1 and st.

VI. DYNAMIC IMITATION RESULTS

In this section, we present results from our method for
learning dynamically balanced imitative motions based on
observing a human perform whole-body motions. Motion
capture data was collected while performing various actions,
each with three to five repetitions. Kinematic joint angles were
then estimated using inverse kinematics. From this kinematic
data, we construct the latent joint configuration space from the
principal components basis matrix C. The number of principal
components was found empirically and was guided by striking
a balance of several factors. Firstly, the dimensionality chosen
should afford accurate reconstruction of the prior kinematic
motion. In our motion data, greater than 99% of the variance
of the data was along the first four principal components.
A second factor in selecting the dimensionality is to allow
sufficient representational power for finding a stable motion
within the latent space of actions. Finally, for reasons of
efficiency, it is desirable to keep the number of latent dimen-
sions to a minimum. We experimented with dimensionalities

between three and six, and found four to be a good balance
of representational freedom and efficiency.

In order to bootstrap the nonparametric forward model, we
first perform a set of random exploration trials which are sam-
pled from the initial set of beliefs B(at) ∝ P (at|m1 . . .mT ).
Parametric model variances (such as in the observation model,
temporal action smoothness model, and human input kinematic
model) were also set empirically to make sure that the relative
values allowed for a compromise between kinematically sim-
ilar imitations and dynamic stability of the resulting motion.

We tested an implementation of our method using the
robotics simulator package Webots, which provides accurate
dynamics simulation of the Fujitsu HOAP-2 robot. We used
its sensor simulation capability to also model the necessary
gyroscope and foot pressure sensor signals (to which we added
realistic levels of Gaussian noise to help avoid overfitting the
physics of the simulator).

After learning an initial forward model based on the data
from the bootstrap trials, we add the dynamic balance variables
(all set to 1) to the evidence set and again compute the
beliefs B(at) ∝ P (at|m1 . . .mT , b1 . . . bT ). Based on these
beliefs, we compute and execute the maximum probability
actions ât = argmaxat

B(at). From this execution, we add
the actions as well as the maximum likelihood state estimates
to the data set D and update the kernel matrix. For efficiency,
we found that updating the kernel hyperparameters in every
trial is unnecessary. We re-optimized every five trials, with no
discernible degradation in performance.

Note that currently we incorporate feedback after each
trial. In theory one could utilize feedback immediately by
performing a model update and inference step at each time
step within a trial; however, for simplicity of implementation,
we perform open-loop execution of selected actions.

We found that our model is able to quickly infer sequences
of actions which do not cause the robot to lose balance and fall,
even if all of the bootstrap iterations were unstable. Specifi-
cally we present results here based on dynamic imitation of
two motions: a squat motion and a one-legged balance motion
(in other experiments, we were able to also generate stable
motions on examples such as bowing and leaning side-to-
side). The resulting imitations of these two selected motions
are shown in Figure 3.

Figure 4 shows how the duration that the robot remained
balanced and did not fall quickly increases to the full motion
length of 63 time steps, after 20 bootstrap and approximately
15 constrained trials. Figure 5 illustrates that the likelihood of
the dynamics sensors increases dramatically once the proba-
bilistic dynamic balance constraint propagated throughout the
network.

Finally, in order to make sure that our inferred imitative
motions (taken after the balance duration and stability log
likelihoods converged) were not merely overfitting the physical
simulation of Webots, we applied the final motion as open-
loop commands to the actual HOAP-2 humanoid robot. We
found that even in open-loop mode with no calibration to
the real robot, our imitative motions were dynamically stable.



Fig. 3. Dynamic imitation results. Two sets of thumbnails demonstrate the imitation of two human motions: a squatting motion (first four rows) and a
one-legged balance motion (next four rows). Within each set, the first row shows the motion of the human demonstrator (via a skeletal model fit to the marker
data). The second row shows the result of a purely kinematic imitation performed in the simulator, which in both examples is dynamically unstable: the robot
falls almost immediately. The third row shows the result of executing the final inferred actions found by our algorithm in the simulator. The final row consists
of frames from a video of our HOAP-2 humanoid robot performing imitation using the same actions.
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Fig. 5. Log likelihood of dynamics configuration. The sum over all time
steps of the log likelihood of the probabilistic dynamics model P (bt|dt) is
shown as a function of the trial number. Note that this likelihood increases
dramatically once we learn a valid forward model and constrain the dynamics
using the probabilistic dynamic balance model. In this example, the robot was
learning to imitate the squatting motion shown in Figure 3.

Specifically, out of twenty trials, the robot never lost its
balance during imitation of the squatting motion. In the case
of the one legged balance, the robot was balanced throughout
the motion in 16 out of the 20 trials (80%).

VII. CONCLUSION

We have proposed a new technique for learning dynami-
cally stable whole-body motions in a humanoid robot from
human demonstration. Our model is based on Gaussian pro-
cesses and nonparametric Bayesian inference, and incorporates
prior information about both desired kinematics as well as
dynamics in a rigorous probabilistic framework. Empirical
results using a HOAP-2 humanoid robot demonstrate that
the proposed approach can be effective in learning stable
whole-body motions from human motion capture data without
requiring complicated physics-based dynamic models. Future
work will focus on integrating closed-loop control into the
probabilistic framework and expanding the repertoire of the
robot’s imitative abilities to more complex behaviors including
locomotory actions.
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