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Abstract— In an effort to ease the burden of programming
motor commands for humanoid robots, a computer vision tech-
nique is developed for converting a monocular video sequence
of human poses into stabilized robot motor commands for a
humanoid robot. The human teacher wears a multi-colored
body suit while performing a desired set of actions. Leveraging
the colors of the body suit, the system detects the most probable
locations of the different body parts and joints in the image.
Then, by exploiting the known dimensions of the body suit,
a user specified number of candidate 3D poses are generated
for each frame. Using human to robot joint correspondences,
the estimated 3D poses for each frame are then mapped
to corresponding robot motor commands. An initial set of
kinematically valid motor commands is generated using an
approximate best path search through the pose candidates
for each frame. Finally a learning-based probabilistic dynamic
balance model obtains a dynamically stable imitative sequence
of motor commands. We demonstrate the viability of the
approach by presenting results showing full-body imitation of
human actions by a Fujitsu HOAP-2 humanoid robot.

I. INTRODUCTION

Teaching complex motor behavior to a robot can be
extremely tedious and time consuming. Often, a programmer
will have to spend days deciding on exact motor control
sequences for every joint in the robot for a pose sequence
that only lasts a few seconds. A much more intuitive
approach would be to teach a robot how to generate its
own motor commands for gestures by simply watching an
instructor perform the desired task. In other words, the robot
should learn to translate the perceived pose of its instructor
into appropriate motor commands for itself. This imitation
learning paradigm is intuitive because it is exactly how we
humans learn to control our bodies [1]. Even at very young
ages, we learn to control our bodies and perform tasks by
watching others perform those tasks. But the first hurdle in
this imitation learning task is one of image processing. The
challenge is to develop accurate methods for extracting 3D
human poses from monocular image sequences.

Imitation learning in humanoid and other robots has been
studied in depth by a wide array of researchers. Early work
such as [2], [3] demonstrated the benefit of programming
a robot via demonstration. Since then researchers have ad-
dressed building large corpora of useful skills [4], [5], [6],
handling dynamics [7], [8], studied biological connections

[9], or addressed goal-directed imitation [10].
Typically a marker based motion capture system is used

to estimate human poses as input for training robots to
perform complex motions. This requires a full motion capture
rig to extract the exact locations of special markers in a
restricted 3D space. An instructor is typically required to
wear a special suit with careful marker placement. The
motion capture system then records the 3D position of each
marker and recovers degree-of-freedom (DOF) estimates
relative to a skeletal model using various inverse kinematic
techniques. Due to careful calibration of the cameras, highly
accurate pose estimates can be extracted using multi-view
triangulation techniques.

The biggest downside to using a motion capture rig in
our imitation learning scenario is that training can only be
performed in a rigid (and expensive) environment. Also, the
motion capture system is unsatisfying because it does not
allow the robot to behave autonomously. In this paper we
demonstrate initial steps in allowing the robot to use its own
vision system to extract the 3D pose of its instructor. This
would allow us to ”close the loop” for the learning process.
Using only its own eyes, a robot should be able to watch
an instructor, convert what it sees into a 3D pose, and then
translate that sequence into appropriate motor commands.

A large body of work has studied the problem performing
pose estimation from vision. Early computational approaches
[11], [12] to analyzing images and video of people adopted
the use of these kinematic models such as the kinematic tree
model. Since these earliest papers many systems have been
proposed for pose estimation and tracking (for examples see
[13], [14], [15], [16]), yet none have significantly supplanted
marker based motion capture for a broad array of applica-
tions.

The biggest limitation of many of these vision-based pose
estimation techniques is that they require multiple, distant
and often carefully calibrated cameras to be placed in a
ring around the instructor. While more portable and less
costly than a commercial motion capture rig this is still not
desirable for autonomous robotic imitation learning. Thus
in this paper we propose a method which relies solely on
the robot’s own commodity monocular camera. We note that
our work on monocular pose estimation builds on previous
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Fig. 2. RGB training for body part detection. The top image shows hand
selected body part regions and the bottom plot shows each body part’s color
clusters.

techniques for solving the human and limb tracking problem
using learned image statistics [17], [18], [19], [20], [21].

II. POSE ESTIMATION USING MONOCULAR VIDEO

As an alternative to expensive and cumbersome motion
capture systems, we have developed a new approach to
estimating human poses using only a single, uncalibrated
camera and a multi-colored body suit. The method uses a
nonparametric probabilistic framework for localizing human
body parts and joints in 2D images, converting those joints
into possible 3D locations, extracting the most likely 3D
pose, and then converting that pose into the equivalent motor
commands for our HOAP2 humanoid robot. As a final step,
the motor commands are automatically refined to assure
stability when the imitative action is finally performed by
the humanoid robot. The overall flow of the data processing
is shown in Figure 1.

A. Detecting Body Parts:

The first step of the process is to detect where the different
body parts are most likely located in each frame of the video
sequence. Since we have granted ourselves the concession of
using clothing with known colors, body part detection is done
by training a classifier in RGB color space.

During the training phase, the user labels example regions
for each of the body parts using a simple GUI. The RGB
values of the pixels in each region are then fit with Gaussian
distributions and the curve fit parameters are saved to a file.
An example of hand selected upper body parts and their RGB
color clusters are shown in figure 2.

Once the colors have been learned for each body part, it
is relatively fast and easy to detect the probable body part

Fig. 3. Probability map for the location of each upper body part in the given
frame. The value assigned to each pixel in the map is found by evaluating
the pixel’s RGB values using the previously trained Gaussian distributions.
Thus, intensity of the image on the right indicates the relative likelihood of
a pixel being a body part.

Fig. 4. Example of a probability map for the 2D locations of each joint
for the video frame shown on the left. Joint maps are found by multiplying
together blurred versions of each of the body part maps.

locations in any other frame from the sequence. For example,
figure 3 shows the probability of each pixel being part of
the person’s torso, where intensity of the image encodes the
relative likelihood. Part location probability maps can thus
be generated for each body part in each frame of the video
sequence.

B. Converting Body Parts into 2D Joint Location Probability
Maps:

Once probability maps have been generated for each body
part, the system uses that information to generate probability
maps for each of the person’s joints. For every pair of body
parts that are connected by a joint, the system performs
two steps to generate the joint location probability map.
First, each body part probability map is spatially blurred
with a Gaussian kernel with a variance of 1 pixel. To speed
up processing this blurring is performed in the frequency
domain using FFTs. Then, for every pair of body parts that
are connected by a joint, the spatially blurred body part maps
are multiplied together and the resulting map is normalized
so it is a valid probability distribution function (PDF) for
the current joint. The resulting maps show the most likely
locations for each of the instructors joints in the current 2D
video frame. An example of a 2D joint location probability
map is shown in figure 4.

For the work described herein, the lower body joint
localization was done directly through color detection unlike
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Fig. 1. General overview of the proposed approach to pose estimation. Arrows indicate what previous and future information is used to generate the data
in each step of converting a raw video sequence into a stable set of motor commands for the humanoid to perform.

the upper body where full parts were detected first and then
converted into joint locations. The differences in processing
of the lower body and upper body are meant to illustrate two
varying methods for joint localization. Detecting the joints
directly from color is much faster but is more likely to result
in joint locations being lost due to self occlusions throughout
the video sequence. The technique used on the upper body
is more robust to occlusions as there is a larger region of
color to detect and the likelihood of full occlusion of a body
part is much lower than occlusion of a joint. However the
processing time required is considerably higher when body
part locations need to be converted into joint locations.

C. Sampling 2D Poses From The Joint Maps:

The next step the system takes is to randomly sample N
different 2D poses from the joint location distributions. The
sampling is done with replacement using the PDF of each
joint to control the sampling. The poses thus generated are
a collection of the most likely poses estimated from a single
frame. Figure 5 shows an example of fifty 2D poses sampled
from the joint distributions.

D. Converting 2D Poses into 3D Poses:

Converting the 2D poses into poses in 3D space is done
by detecting foreshortening and requires that we exploit the
approximate known dimensions of the human body. In this
system, all body part lengths are measured with respect to the
length of the torso. This helps make the system more robust
and allows the trainer to be any distance from the camera.
In our course model of the human body, the shoulder line

Fig. 5. Example of 50 2D poses sampled from the joint distribution maps.
Red dots indicate sampled joint locations and the green lines show which
joints are connected in each sample pose.

is 0.6 times the length of the torso, the upper arms are 0.4
times the length of the torso, and the lower arms are 0.35
times the length of the torso. However, this model could
be extended to the case of multiple human instructors by
learning probability distributions over the lengths rather than
a single proportional length.

The limitation of using foreshortening to generate candi-
date 3D poses is that the user cannot bend forward at the
waist during the video sequence or the normalization factor
will be thrown off. The user can, however move in any other
manner desired. The user can freely move any distance from
the camera. Also, if the user is not facing the camera (or
even with his back to the camera) the system will detect the
foreshortened shoulder width and still be able to generate 3D
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Fig. 6. This figure shows a top down view of how a single 2D upper
body pose would be converted into 8 different possible 3D poses. Grey
lines indicate the measured length of the 2D pose body parts and the red
lines indicate the possible poses in 3D.

Fig. 7. This figure shows results for a single 2D pose (left) converted into
all possible 3D poses (right).

poses.
Converting a given 2D pose into 3D is thus a matter of

figuring out how far forward or backwards each joint needs
to move in order to make each body part the correct length
in 3D space. For example, if the upper left arm is measured
to be length Dmeasured in the current 2D pose and the upper
left arm is supposed to be length Dtrue in 3D space, then the
left elbow could either be forward or backwards the distance
Doffset, where

Doffset = ±
√

D2
true −D2

measured. (1)

A top down view of how a single 2D upper body pose can
be converted into 8 possible 3D poses is shown in Figure 6.

Figure 7 shows a frontal view of the results of 2D to 3D
conversion using the above described method.

E. Converting 3D Human Poses into Robot Angles:

The robot’s upper body has 8 degrees of freedom (3 for
each shoulder and one for each elbow) and the lower body
has 12 degrees of freedom (3 for each hip, 1 for each knee,
and 2 for each ankle). Each degree of freedom is controlled
by a servo motor. We use position-based control so motor
commands are simply joint angles from an initial ”rest” state.

Converting each of the 3D poses into the corresponding
angles for the robot joints is performed differently for the
upper body and lower body.

The upper body angles are found directly. Starting with
the upper left arm, the system detects the amount of for-
ward/backward rotation in degrees, saves that angle, and then

rotates all of the left arm joints about the shoulder using the
negative of the found angle. This procedure is carried out for
each of the degrees of freedom until all of the joints have
been rotated back to their initial state. Thus, after finding all
the angles required to get the 3D pose to its zero state, we
have all the motor commands the robot needs to perform to
get to the current 3D pose.

Unlike the upper body, the lower body angles are solved
using inverse kinematics and an iterative optimization. To
find the angles that generate each of the desired 3D leg
positions for a given pose, the degrees of freedom are
adjusted iteratively using the Newton Raphson method until
the ankle locations converge to the desired 3D points.

The discrepancy between the upper and lower body pro-
cessing techniques is due to the different motor configura-
tions for arms and legs on the HOAP2 humanoid. Ambigui-
ties that arise from the motor configurations in the robot hip
made it impossible to isolate the hip angles serially as was
done with the upper body angles. The direct technique used
on the upper body is much faster than the iterative technique
used on the lower body.

Throughout the process of converting each of the 3D poses
into robot angles, any poses generated that require motor
commands that are outside the limits imposed by the robot’s
physical structure are removed from the list of possible poses.
This both saves processing time and greatly reduces the
number of 3D poses that are generated for the given frame.

F. Finding the Smoothest Path Through the Frames:

After performing all the steps listed above, the system is
inevitably left with a fair number of possible poses (motor
commands) it could send to the robot for any given frame
in the sequence.

Initially, we tried to use a tree search to look forward
a few frames and decide which complete path would be
the smoothest. However, best-path search proved to be very
computationally intensive as the branching factor of the
tree is quite large (between 10 and 300 poses per frame).
Finding the best path for even a modest 5 future frames
would potentially become unmanageable with today’s current
processor technology.

To bypass this issue we only keep a finite number, M, of
the smoothest paths as we search forward in time through
the space. (For the results show in this paper M was set to
10.) Almost inevitably, we eventually get to a point where
all M paths agree on the best pose to use for a given frame
in the past. Once this agreement is reached by all M paths,
the motor commands are saved for that frame. We define
smoothness as the minimum sum of Euclidean distances
between the motor commands sent to the robot over an entire
sequence of poses.

III. PLANNING DYNAMICALLY STABLE MOTIONS

Once pose estimates have been obtained from monocular
image frames the system must plan a sequence of actions
(HOAP-2 motor commands) which yield a dynamically sta-
ble imitative motion. The method employed here is based on
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Fig. 8. Dynamic Bayesian network used to plan stable imitative actions (at)
based on a sensor-based state representation (st) and dynamics constraints
(ct).

a previously developed Bayesian dynamic imitation learning
framework [22], [23]. The central idea of the method is the
Probabilistic Dynamic Balance (PDB) model, which allows
for finding dynamically stable motions without requiring a
priori knowledge of the robot’s dynamic properties (such as
mass and moments of inertia). Rather, using a constrained
exploration algorithm a probabilistic sensorimotor prediction
model is learned directly from actuation and sensory infor-
mation. To solve the problem of searching an intractably
large space of all humanoid joints ( 25 dim.) we utilize
dimensionality reduction to yield an efficient ”latent” search
space.

The PDB method was previously demonstrated in in-
ferring stable, whole-body imitative motions from multi-
camera marker-based pose estimation systems [22]. However,
in the case of pose estimates from monocular images, the
planning method must be robust to a larger degree of noise
and uncertainty. Due to the Bayesian formulation adopted,
information characterizing the additional sensory noise can
be directly factored into the algorithm.

A. Probabilistic Dynamic Balance model

Our approach is based on the dynamic Bayesian network
(DBN) shown in Figure 8. Imitative motions are modeled
as a generative process: a single sequence of actions at

generates both the human demonstrator’s posture (ht) as
well as the humanoid robot’s posture. The robot’s kinematic
configuration (kt) at time t is modeled as part of the robot
state st = [kt;dt], where dt represents a sensor-based
dynamics configuration. In order to achieve dynamic bal-
ance we impose a probabilistic constraint via the dynamics
constraint variable ct (for details see [22]). The goal of our
algorithm is to find a sequence of actions a1:T with high
posterior likelihood given the model presented in Figure 8:

a∗1:T = P (a1:T |h1:T , c1:T ) (2)

Such an action sequence will be both imitative (based on the
likelihood P (ht|at)) and dynamically stable (via P (ct|st)).
Given the continuous domain of all variables in the graphical
model, and non linear-Gaussian distributions we must utilize
approximate inference techniques. Here we utilize a sam-
pling based technique very similar to nonparametric belief
propagation ([24]).

The crucial difference between the PDB model used in
previous work ([22]) and the usage here has to do with adapt-

Fig. 9. Latent posture space representation. Using principal components
analysis, a high degree of freedom motion (here, a one-legged balance) is
embedded in a two-dimensional space. The blue line shows the sequence
of postures represented in the low-dimensional space.

ing the human pose estimation likelihood model P (ht|at)
to account for greater noise and uncertainty. As in previous
work we use the linear-Gaussian form:

P (ht|at) = MCat + b + vh , vh ∼ N (µh,Σh) . (3)

Here M,b parameterize a simple linear mapping between
human and robot joint definitions. The matrix C is the
action embedding matrix discussed in Section III-B. The
parameters of the Gaussian noise process denoted µh,Σh

characterize the inherent uncertainty in joint estimates from
the visual pose estimation system. In our experiments we
empirically chose µh = 0.0,Σh = 0.1. During constrained
exploration, actions are initially sampled from the distribu-
tion P (a1:T |h1:T ) which we refer to as a “prior” search dis-
tribution since it does not impose the dynamics constraints.
Thus the variance term Σh affects the degree to which we
allow the candidate robot actions to differ kinematically from
the estimated human pose. In the case of pose estimates from
monocular vision, this search space is increased due to the
large variance term. However, we found the PDB constrained
exploration algorithm still efficiently finds a stable solution.

B. Latent action representation

Planning humanoid motion in the full kinematic posture
space is often intractable due to the large number of degrees
of freedom and the well known curse of dimensionality.
Fortunately, with respect to a wide class of motions (such
as walking, kicking, bowing), the full number of degrees of
freedom (25 in the HOAP-2) is highly redundant.

Here, as in previous work we use linear principal compo-
nents analysis (PCA) to create a low-dimensional embedding
of the posture space. We first estimate the kinematic covari-
ance matrix Σk from the pose estimates:

Σk = E[(ht − µh)(ht − µh)>] (4)

We then construct the latent space of at from the d
principal component vectors of the combined covariance
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(a)

(b)

Fig. 10. Results of pose estimation from a monocular video sequence and stable imitation of estimated poses by a HOAP-2 humanoid robot.

matrix:
V −1(Σk)V = D (5)

where V is a matrix of eigenvectors and D is a diagonal
matrix of non-increasing eigenvalues λi. Thus we form the
embedding matrix C from the first d eigenvectors (columns
of V ). The results presented here used d = 4 as this covered
96% of the empirical variance in the pose estimates.

C. Sensorimotor prediction and constrained exploration

We utilize a nonparametric, data-driven approach to sen-
sory signal prediction. In brief we utilize Gaussian process
(GP) models [25] to predict both the kinematic and dynamic
configuration of the robot given an action at and a previous
state st−1. This mapping (st−1,at) → st is represented
probabilistically in the conditional probability distribution
P (st|st−1,at). Essentially this probabilistic mapping pre-
dicts the resulting kinematic configuration (in latent posture
space) and sensory signals such as gyroscope and foot
pressure readings. Gaussian process models allow us to
effectively learn this distribution from empirical data, and
to generalize to new regions of the state and action spaces.

This ability to generalize to new actions is leveraged
by our planning algorithm which selects candidate action
trajectories based on Eq. 2, executes them, and then updates
the Gaussian process forward model. Given the update to the
nonparametric forward model the next iteration will select an
improved action sequence. In the experiments presented in
Section IV, we first ran five “bootstrap” trials, trained the
GP model, imposed the dynamics constraint, and ran twenty
constrained exploration trials. Due to space constraints, we
refer the reader to [22], [23] for details of the constrained
exploration algorithm.

IV. RESULTS

The pose estimation system was applied to two video
sequences. In the first video, the instructor wears the multi-
colored body suit and performs a number of arm movement
actions. In the second video, the instructor performs a
leg lifting gesture. Results of human pose estimation and
dynamically stable imitation by the HOAP-2 humanoid robot
for both sequences are presented in figure 10. Processing
times for converting the video sequence to the initial set
of motor commands were 17 frames per second using a
dual-core 2.7 GHz processor. The final stabilization of the
poses sequences was generated using MATLAB and required
approximately one minute for every ten frames of video.

As shown in figure 10, the tracking system performs quite
well when given a short video sequence. The poses generated
for the robot appear very similar to the poses performed by
the human trainer. The ambiguities that arise in converting
the 2D poses into 3D poses seem to be cleaned up nicely
by the fact that we trim off any pose which violates the
robot’s kinematic constraints. Essentially we have applied a
hard-limit prior on possible 3D poses.

V. DISCUSSION

Despite the successful results shown in figure 10, there
are still improvements that we plan to implement in future
work. First, the system should learn to take cues from
body part occlusion to aid in determining wether joints are
rotated toward the camera or away from the camera. Spatial
relationships of the different body parts can be inferred by
detecting when one body part is blocking another body part
thus improving on the estimates about 3D poses. Future work
on this system will also include distributed processing of the
video data to get to real-time high frame-rate imitation.
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The biggest limitation of the method currently is that
the instructor is not allowed to bend forward at the waste
during the performed gesture. However, as noted earlier, this
is the only restraint on the user’s motion. Torso twisting
and forward and backward motion are easily handled by the
system.

VI. CONCLUSIONS

In this paper we have described and demonstrated a
”closed-loop” system for learning new behaviors in a hu-
manoid robot directly from visual demonstration by a human
teacher. Using a non-parametric probabilistic framework, the
system detects most likely locations for each body part and
each joint from monocular video sequences. The system
then extracts a user-specified number of 2-dimensional poses
from the joint location distributions, converts the 2D poses
into 3D space, trims off impossible poses, and then sends
motor commands to the robot. Results were demonstrated
on a HOAP-2 humanoid robot using an example video
sequence containing arm motions and a challenging one-
legged balancing action sequence.

The system presented herein obviates the need for cum-
bersome and expensive multi-camera motion capture systems
by using a single camera already on the robot and thus marks
a first step towards achieving truly autonomous vision-based
learning of new behaviors in a humanoid robot from human
demonstrations.
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