Vision
Research

PERGAMON

Vision Research 39 (1999) 1963-1989

An optimal estimation approach to visual perception and
learning™

Rajesh P.N. Rao *

The Salk Institute, Sloan Center for Theoretical Neurobiology and Computational Neurobiology Laboratory, 10010 N. Torrey Pines Road,
La Jolla, CA 92037, USA

Received 1 April 1997; received in revised form 16 April 1998

Abstract

How does the visual system learn an internal model of the external environment? How is this internal model used during visual
perception? How are occlusions and background clutter so effortlessly discounted for when recognizing a familiar object? How is
a particular object of interest attended to and recognized in the presence of other objects in the field of view? In this paper, we
attempt to address these questions from the perspective of Bayesian optimal estimation theory. Using the concept of generative
models and the statistical theory of Kalman filtering, we show how static and dynamic events occurring in the visual environment
may be learned and recognized given only the input images. We also describe an extension of the Kalman filter model that can
handle multiple objects in the field of view. The resulting robust Kalman filter model demonstrates how certain forms of attention
can be viewed as an emergent property of the interaction between top—down expectations and bottom—up signals. Experimental
results are provided to help demonstrate the ability of such a model to perform robust segmentation and recognition of objects

and image sequences in the presence of occlusions and clutter. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Vision is fundamentally a dynamic process. The im-
ages impinging on the retina are seldom comprised of
unrelated static signals but rather, reflect measurements
of a coherent stream of events occurring in the distal
environment. The regularity in the structure of the
visual input stream stems primarily from the constraints
imposed on visual events by various physical laws of
nature in conjunction with the observer’s own choices
of actions on the immediate environment. Under such a
setting, the goal of a visual system becomes one of
estimating (and predicting) the hidden internal states of
an observed dynamic system, in this case, the visual
environment. Accurate estimation of the internal state
of the environment then becomes synonymous with
accurate recognition of the input stimuli generated by
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the environment. More importantly, the ability to esti-
mate current states and predict future states of the
environment allows the organism to learn efficient
visuomotor control programs and form useful cognitive
plans for the immediate and distant future.

In this paper, we describe a statistical theory of
vision based directly on the assumptions that (a) vision
is a stochastic, dynamic process and (b) the task of
visual perception is to optimally estimate visual events
and on a longer time scale, learn efficient internal
models of the dynamic visual environment given only
the input images. Optimality is defined in a Bayesian
manner in terms of maximizing the posterior probabil-
ity of generating the observed visual data, given a prior
estimate of the state and the current input image. Using
linear models for the dynamics of the state and for the
generation of images from a given state, we derive
equations for state estimation that are shown to imple-
ment the well-known Kalman filter (Kalman, 1960;
Kalman & Bucy, 1961) from optimal control theory
(Bryson & Ho, 1975). The Kalman filter is essentially a
linear dynamical system that attempts to mimic the
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behavior of an observed natural process. It does so
by calculating, at each time instant, an optimal esti-
mate of the current state of the observed process.
This state estimate is used in conjunction with an
internal model of the observed process to generate a
prediction of the next expected input. Given the next
input, the filter computes the difference (or sensory
residual error) between its prediction and the actual
input, and uses this residual to correct its estimate of
the state. The new corrected estimate is then used to
predict the next state, thereby completing one full it-
eration of the filter.

In the context of vision, the Kalman filter model
can be regarded as a natural generalization of some
previous schemes for appearance-based vision based
on principal component analysis (PCA) (cf. the Ei-
genface method of Turk & Pentland, 1991) and the
Eigenspace method of Murase & Nayar, 1995). It also
shares the favorable properties of some recently pro-
posed learning algorithms (Olshausen & Field, 1996;
Bell & Sejnowski, 1997) that have been shown to
develop localized receptive fields similar to those of
simple cells in the primary visual cortex from natural
image inputs (see Rao & Ballard, 1997a for more
details). Although Kalman filters have previously been
used in computer vision (see, for example, Blake &
Yuille, 1992), many of these applications have relied
on hand-built dynamic models of restricted visual
phenomena such as translating contours. The present
approach differs from these previous approaches in
allowing dynamic internal models of visual phenom-
ena to be learned on-line directly from the spatiotem-
poral input stream (Section 5). In addition, we show
how the standard Kalman filter can be made robust
to occlusions, clutter, and noise (Section 6). In Sec-
tion 7, we provide experimental results showing how
a visual system can:

1. Learn internal models of static 3D objects and
dynamic stimuli given only their input images.

2. Use the learned internal models for (a) recognition;
(b) categorization; (c) hypothesis verification; (d)
novelty detection and subsequent learning, and ()
prediction.

3. Learn efficient internal representations to combat
the problem of perceptual aliasing.

4. Recognize and segment objects in the presence of
occlusions and background clutter.

5. Attend to a particular object of interest in the
presence of other objects or noise in the input
stream.

6. Interpret an ambiguous input stimulus in two differ-
ent ways depending on an initial ‘priming’ input.

We conclude in Section 8 by discussing the strengths
and weaknesses of the model and suggest possible
directions for future research.

2. Problem statement and previous approaches

There is a growing consensus among cognitive
neuroscientists that the brain learns and maintains an
internal model of the external world (Barlow, 1985,
1994), and that conscious experience involves an active
interaction between external sensory events and this
internal modeling process (Picton & Stuss, 1994). The
concept of an internal world model and its relationship
to sensory feedback has been a dominant theme in
modern cognitive psychology (Neisser, 1967). Neisser
proposed an ‘analysis-by-synthesis’ approach to per-
ception, wherein an internal world model is adapted
according to the sensory stimuli received by the per-
ceiver. This idea is reminiscent of Mackay’s epistemol-
ogical automata (Mackay, 1956), which ‘perceives’ by
comparing its expectations of sensory inputs with the
actual inputs. The evolutionary origins of this ongoing
comparison process can perhaps be traced back to the
simple feedback loops of micro-organisms (Humphrey,
1992), where the ‘modeling’ occurs at the organism’s
peripheral surface, as opposed to higher mammals,
where this modeling presumably occurs at the level of
the cerebral cortex.

Fig. 1(a) depicts the problem faced by an organism
perceiving the external world with the help of an
internal model. The organism does not have access to
the hidden internal states of the world that are causing
its sensory experiences.

Instead, it must solve the ‘inverse’ problem of
estimating these hidden state parameters using only the
sensory measurements obtained from its various sensing
devices in order to correctly interpret and understand
the external world. Note that the definition of an
‘external world’ need not be restricted to sensory mod-
alities such as vision or audition. One may equally well
build and use internal models of, for instance, the
various muscular systems responsible for executing
various types of body movements. For the purposes of
this paper, however, we shall be concerned with internal
models of the visual environment.

The use of an internal model begets two important
questions: (a) what mathematical form does the internal
model assume, and (b) how is this internal model
learned and used by the organism during perception?
Perhaps the simplest mathematical form one can
ascribe to an internal model is to assume a linear gener-
ative model for the process underlying the generation of
sensory inputs. In particular, at any time instant ¢, the
internal state of the given input generating process is
assumed to be characterized by a k-element internal
state vector r(t). Although not directly accessible, this
internal state vector is assumed to generate a measu-
rable and observable output I(¢) (for example, an image
of n pixels) according to:
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Fig. 1. Internal world models and the problem of optimal estimation of
organism relying on an internal model of its environment (from O’Reilly,

hidden state. (a) conveys the essence of the general problem faced by an
1996). The underlying goal is to optimally estimate, at each time instant,

the hidden internal state of the environment given only the sensory measurements I. (b) depicts a Kalman filter-based solution to the estimation
problem. The internal model is encoded jointly by the state transition matrix ¥ and the generative matrix U, and the filter uses this internal model
to compute optimal estimates £ of the current internal state r of the environment.

I(t) = Ur(1) o
where U is a (usually unknown) generative (or measure-
ment) matrix that relates the & x 1 internal state vector
r(¢) to the n x 1 observable output vector I(¢).

In the case of vision, I(¢) could represent a retinal
image, generated by a set of physical ‘causes,” as repre-
sented by r(z), that are intrinsic to the visual environ-
ment. These physical causes may be related to various
intrinsic attributes of the stimulus, such as shape, illu-
mination, and texture. The matrix U specifies how these
attributes have been transformed to yield the measured
image I(¢z). The k columns of the matrix U can be

regarded as a set of k basis vectors for representing the
input images. The k values in the state vector r(¢) act as
coefficients for these basis vectors, determining how
much weight to assign to each basis vector U; for a
given input image I(¢):

k
I(r) = _Zl Uiri(1)
J=
Given the generative model above, the goal of a sensory
system becomes one of optimally estimating the state
vector r(z) for any given input I(7) and on a longer time
scale, learning an internal model of the input generating
process by learning appropriate basis vectors within the
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matrix U. In a neural setting, the estimate for the basis
vector matrix U is assumed to be stored within the
synaptic weights (or efficacies) of neurons in a network
while the state vector r(z) is assumed to denote pre-
synaptic neuronal responses (or firing rates).

2.1. Previous approaches

There has been recent interest in appearance-based
approaches to computational vision. These differ sig-
nificantly from traditional 3D model-based or geome-
try-based approaches (Huttenlocher & Ullman, 1987;
Lowe, 1987; Lamdan & Wolfson, 1988; Grimson,
1990), which have typically been limited to representing
restricted types of geometric objects. In the appearance-
based approach, the need for explicit 3D geometric
models of objects is avoided by extracting object repre-
sentations directly from the input images. For example,
Buhmann, Lades and Malsburg (1990) use a set of
Gabor filters to form composite feature detectors called
‘jets,” whose responses to input images are used in an
elastic graph-matching strategy for recognition. Daug-
man (1993) uses multiscale 2-D Gabor wavelets to
generate long 256-byte ‘iris codes’ for a human eye
which he uses in a scheme for personal identity verifica-
tion. Viola (1996) describes a recognition system that
uses the responses of a statistically motivated set of
‘complex’ local features. Rao and Ballard (1995) use
steerable Gaussian derivative filters at multiple scales
for object identification and location using an active
vision system. Mel (1996) has proposed an object recog-
nition system called SEEMORE which employs ‘recep-
tive field’ histograms for recognition, partly inspired by
the work of Swain and Ballard on color histograms
(Swain & Ballard, 1991). The ‘receptive fields” are com-
prised of a large number of local color and edge/curva-
ture detectors. A similar approach based on the notion
of local receptive fields has independently been explored
by Schiele and Crowley (1996). Schmid and Mohr
(1996) use differential invariants rather than spatial
features or filters and extract responses from salient
‘keypoints’ in a given scene. Poggio, Edelman and
colleagues have used radial basis function networks for
learning and recognizing wire objects and faces (Poggio
& Edelman, 1990; Brunelli & Poggio, 1993). Nelson
and Selinger (1998) report good results on a large
database of 3D shapes using 2D boundary fragments in
the context of an associative memory.

In many of the above appearance-based approaches,
the features or spatial filters are fixed and not learned
from input images. In terms of the generative model in
Eq. (1), this reduces to using a fixed set of basis vectors
within the generative matrix U. These basis vectors
(spatial filters or features) are selected a priori based on
certain favorable mathematical or biological properties.
The feature vector obtained by convolving a given

input image with these basis vectors is used for the
purpose of recognition. In terms of Eq. (1), this feature
vector corresponds to an estimate of the state vector
r(¢) given a particular choice of basis vectors. The
accuracy and usefulness of this estimate is determined
primarily by the choice of the hand-picked basis vec-
tors. As a result, the recognition system is prone to
failure in cases where the hand-picked basis functions
do not match the statistics of the input images. A
recognition system can overcome this problem if it is
endowed with the ability to autonomously tailor its
basis vectors to match the statistics of its input stream,
allowing it to learn and maintain an efficient internal
model of its input environment.

2.2. Principal component analysis (PCA)

A popular technique that does allow the learning of
basis vectors for efficiently representing input images is
principal component analysis (PCA) (Chatfield &
Collins, 1980; Jolliffe, 1986; Ballard, 1997), also known
as the Karhunen—Loéve transform. Consider the prob-
lem of encoding a collection of n x 1 input vectors I,
L,..., I, using an n x k matrix U. One solution is to
choose the columns of U to be the first & dominant
eigenvectors (in terms of maximal eigenvalues) of the
input covariance matrix E(II”) as computed from zero-
mean samples of input data (E denotes the expectation
operator and 7 denotes transpose). This comprises the
core of the ‘eigenface’ technique of Turk and Pentland
(1991) and the eigenspace method of Murase and Na-
yar (1995). Alternately, assuming P <n, one can com-
pute the singular value decomposition (SVD) of the
matrix of input vectors to directly obtain the principal
component basis vectors without having to compute the
covariance matrix. This approach is utilized by Black
and Jepson (1998) in their eigen-tracking approach. In
either case, the columns of U are orthogonal to each
other and the estimate of the state vector r correspond-
ing to a given input I can be computed as a simple
linear feedforward function of the input:

r=U"1 2)

Since k is generally much smaller than n, the state
vector r is an efficient compressed representation of the
input image. A reconstruction of the input image I can
be generated from r by using the following relation
which simply inverts the transformation in Eq. (2):

I=Ur (3)

It is well-known that the eigenvector matrix U mini-
mizes the pixel-wise expected reconstruction error
function:

J(U) = z (' — U'r)> = (1 — Ur)"(1— Ur)
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(where U’ denotes the ith row of the matrix U) over all
inputs subject to the constraint that the columns of U
are orthogonal, r being specified as in Eq. (2).

In summary, PCA transforms an original set of
variables (for example, image pixels) to a new set of
uncorrelated variables (principal components) which are
derived in the order of decreasing importance (i.e.
decreasing variance). The uncorrelated variables are
linear combinations of the original variables. The pri-
mary goal of PCA is parsimony. The hope is that the
first few components will account for most of the
variation in the original data; further analysis can then
proceed on this new, smaller set of variables, thereby
reducing the effective dimensionality of the data.
Viewed geometrically, the transformation is just a rota-
tion in the space spanned by the original variables.

2.3. Principal weaknesses of PCA

PCA has been used in recent years for tasks such as
face recognition, object recognition, pose estimation
and tracking (Turk & Pentland, 1991; Murase & Nayar,
1995; Black & Jepson, 1998). Implicit in these applica-
tions of PCA to vision and image processing is the
assumption that it provides an adequate description of
the statistical process generating the input images.

Unfortunately, a number of recent studies on the
statistics of natural images suggest that PCA may be
unsuitable for describing natural image distributions
(Field, 1994; Olshausen & Field, 1996). Although PCA
achieves optimal linear data compression, it has several
serious shortcomings that limit its use in vision and
signal processing:

1. The basis vectors obtained from PCA are constrained
to be mutually orthogonal whereas the mechanisms
underlying the generation of natural data are often
best described by using nonorthogonal basis vectors
(Field, 1994; Olshausen & Field, 1996).

2. The internal state or response vector r need not be a
purely one-shot linear feedforward function of the
basis vectors and the input image as it is in the case
of PCA (Eq. (2)). This is especially true in cases where
the basis vectors are not mutually orthogonal or
when there is top—down information from a higher
hierarchical level that can influence the state at a
lower level (cf. Rao & Ballard, 1997a).

3. PCA-based methods have typically been applied to
the analysis of static images and it is not clear how
these methods can be extended to the spatiotemporal
case for prediction and learning of image dynamics
directly from the input stream.

4. Principal component methods are suitable only when
the data are well described by Gaussian clouds.
Recent work by Field (1994) and others strongly
suggest that natural image data cannot be satisfacto-
rily described in this manner.

5. PCA requires the number of basis vectors to be less
than the dimensionality of the input space. This
means that overcomplete representations cannot be
learned (see Simoncelli, Freeman, Adelson and
Heeger (1992), Olshausen and Field (1997), Lewicki
and Sejnowski (1998)) for arguments regarding the
need for overcomplete representations in visual
processing).

6. More importantly, PCA can only capture linear
pairwise statistical dependencies in the input stream.
However, natural scenes are rife with higher-order
statistical structure that cannot be accounted for by
linear pairwise statistics (Olshausen & Field, 1996).

3. The optimal estimation approach

In this section, we suggest a statistical framework
that allows one to overcome some of the main limita-
tions of PCA-based approaches. In particular, we
define a generative model based directly on the assump-
tion that vision is a stochastic, dynamic process. This in
turn allows one to view the task of visual perception as
one of optimally estimating visual events and on a
longer time scale, learning efficient internal models of
the visual environment. Optimality is defined in a
Bayesian manner in terms of maximizing the posterior
probability of generating the observed visual data,
given a prior estimate of the state, the model parame-
ters, and the current input image. Unlike PCA, the
basis vectors are not constrained to be orthogonal and
the state vector is viewed as a free parameter that can
be optimized to suit the choice of the basis vectors. In
addition, the approach allows one to tailor a possibly
overcomplete set of non-orthogonal basis vectors to
match input distributions by allowing one to choose
appropriate prior distributions for the parameters (see
Harpur & Prager, 1996; Olshausen & Field, 1996; Rao
& Ballard, 1997a; Lewicki & Sejnowski, 1998 for more
details).

3.1. Spatiotemporal generative model

Fig. 1(b) shows the mathematical form of the spa-
tiotemporal generative model we will be concerned
with. Briefly, we assume that a natural process in the
external world can be modeled as a stochastic linear
dynamical system. At any time instant ¢, the internal
state vector r(z) is assumed to generate a measurable
and observable output I(¢) (for example, an image)
according to:

I(z) = Ur(t) +n(?) 4

where U is the generative (or measurement) matrix and
n(z) is a Gaussian stochastic noise process with mean
zero and a covariance matrix given by ¥ = E[nn”]. Note
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that this is a sufficient description of n since a Gaussian
distribution is completely characterized by its mean and
covariance.

In addition to specifying how the internal state of the
observed process generates a spatial image, we also
need to specify how the internal state itself changes
with time 7. We assume that the transition from the
internal state r(# — 1) at time instant ¢t — 1 to the state
r(¢) at the next time instant can be modeled as:

r(t) = Vr(t— 1)+ m(t — 1) )

where V is a (usually unknown) state transition (or
prediction) matrix and m is a Gaussian noise process
with mean m(¢z) and covariance Il = E[(m —m)(m —
m)7]. In other words, the matrix V¥ is used to character-
ize the dynamic behavior of the observed system over
time. Any differences between the actual internal state
r(t) and the prediction from the previous time step
Vr(t—1) is modeled as the stochastic noise vector
m(z —1).

The choice of the matrices U and V depends crucially
on the representation r of the presumed internal state of
the modeled process. Traditional applications of the
above spatiotemporal generative model (such as
Kalman filter-based applications) have used anthropo-
morphic characterizations of natural phenomena, mak-
ing use of known physical laws of nature to fix a priori
the matrices U and V' based on a convenient state
representation r (denoting velocity, acceleration, etc.).
However, if one were to use the above framework for
characterizing arbitrary dynamic phenomena, one has
to answer the two related questions: (1) for an arbitrary
internal state representation r, how are the correspond-
ing matrices U and V to be estimated? (2) Given
estimates for matrices U and ¥V, how can one find an
estimate of the corresponding state r? A solution that
we pursue herein is to define an appropriate optimiza-
tion function and minimize this function to obtain
estimates £, U, and V of r, U, and V. Note that the
estimates U and V together encode an internal model of
the world. This internal model generates momentary
state estimates f(¢) denoting interpretations (with re-
spect to the internal model) of observed dynamic phe-
nomena occurring in the external world.

3.2. An optimization function

The parameters r, U, and V in the spatiotemporal
generative model above can be estimated and learned
directly from input data if we can define an appropriate
optimization function which can be minimized with
respect to r, U, and V. For the present purposes,
assume that we know the true values of U and ¥V, and
we therefore wish to find, at each time instant, an
optimal estimate £(z) of the current state r(¢z) of the
observed process using only the measurable inputs I(7).

Suppose that we have already computed a prediction
F of the current state r based on prior data. In particu-
lar, let #(¢) be the mean of the current state vector
before measurement of the input data I at the current
time instant ¢. The corresponding covariance matrix is
given by E[(r—F)(r—F)"]=M. A common optimiza-
tion function whose minimization yields an estimate for
r is the least-squares criterion:

n

Ji=) I=Ur’+ i (r' —)?

=A—Un'd—Ur)+ @ - —F)

where the superscript i denotes the ith element or row
of the superscripted vector or matrix. In the case where
I represents an image, the value for r that minimizes
this quadratic function is the value that (a) yields the
smallest sum of pixelwise differences (residual errors)
between the image I and its reconstruction Ur obtained
using the matrix U, and (b) is also as close as possible
to the prediction ¥ computed from prior data.

The quadratic optimization function above is a spe-
cial case of the more general weighted least-squares
criterion (Bryson & Ho, 1975):
J=1-Ur)’Z-'A-Ut)+(@x—F)'M " '(r—7) (6)
This criterion becomes meaningful when interpreted in
terms of the stochastic model described in the previous
section. Recall that the measurement Eq. (4) was char-
acterized in terms of a Gaussian noise process with
mean zero and covariance . Note also that r follows a
Gaussian distribution with mean F and covariance M.
Thus, it can be shown that J is simply the sum of the
negative log of the (Gaussian) probability of generating
the data I given the state r and the negative log of the
(Gaussian) prior probability of the state r (ignoring
constant terms):

J=(—log P(I|r)) + (— log P(r))

The first term in the above equation follows from the
fact that P(Ir) = P(I, r)/P(r) = P(n, r)/P(r) = P(n), as-
suming P(n, r) = P(n)P(r). Now, note that the posterior
probability of the state given the input data is given by
(using Bayes theorem):

P(xl) = P(Ir)P(x)/P(T)

By taking the negative log of both sides (and ignoring
the term due to P(I) since it is a fixed quantity), we can
conclude that minimizing J is exactly the same as
maximizing the posterior probability of the state r given
the input data 1.

4. Optimal estimation and prediction
The optimization function J formulated in the previ-

ous section can be minimized to find the optimal value
f of the state r by setting 0J/0r = 0. This results in:
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U I-UD)+ M 'F—-F=0
which yields:
WU+ M HN=M""T+UZT"'1

Using the substitution N(t) = (U'Z~'U+ M~ ")~ ! and
rearranging the terms in the above equation, we obtain
the following equation which implements the

well-known Kalman filter from optimal control theory
(Bryson & Ho, 1975):

£(t) =1(¢) + N()UZ(r) ~'(I(¢) — UR(¢)) @

Fig. 2 shows a schematic diagram of the Kalman filter.
The Kalman filter estimate f is the mean of the
Gaussian distribution of the state r after measurement
of T (Bryson & Ho, 1975). The matrix N, which
performs a form of divisive normalization, can likewise
be shown to be the corresponding covariance matrix.
Recall that ¥ and M were the mean and covariance
before measurement of 1. These quantities are updated

as follows:
F)=Vi(t—1)+m(@—1) )
M@)=VN@E—DVT+TI(t— 1) )

The above equations propagate the estimates of the
mean and covariance (f and N, respectively) forward in
time to generate the predictions ¥ and M for the next
time instant.

In summary, the Kalman filter predicts one step into
the future using Eq. (8), obtains the next sensory input
I(z), and then corrects its prediction F(¢) using the
sensory residual (I(#) — UF(¢)) and the gain matrix
K()=N@)UTZ (t)~! as in Eq. (7). This yields the
corrected estimate #(¢) for the new mean of the distri-
bution, which is then used to make the next state predic-
tion ¥(¢ + 1). The covariance matrices corresponding to
F and f(¢) are updated in an analogous fashion. Fig. 3
illustrates this evolution of the conditional Gaussian
probability density function of the state over time
according to the Kalman filter equations.

4.1. Running average example

To understand the Kalman filter equation in perhaps
its simplest form, consider the following rule for com-
puting the average of a set of ¢ real number inputs (1),
112),..., I(t—1), I(¢):

F)y=UI)+12)+ ... + I(2))/t (10)

This equation can be rewritten as:
1
Ft)=7r(t—1) +; I(t)y—7F(t—1)) (11)

where 7(t — 1) is the average of the first # — 1 numbers
te. F(t—1D)=UM)+I12)+...+1(tr—1))/(t—1). Note
that Eq. (11) is simply a recursive form of Eq. (10) and
can be rewritten in terms of Kalman filter terminology
as:

Ft)=ft—1)+N@)U()—F(t—1)) (12)
NO)=(1+Ne—1)"hH"! (13)

where the initial conditions are given by 7(0) =0 and
N(1)=1. In this simple case, since we are estimating a
constant scalar quantity r using an increasing number
of measurements I(¢), the generative model is simply
1(¢t) =r(t) + n(¢) where n has mean zero and a variance
2=1, and U=1. The dynamics are r(t)=r(t—1),
with V=1 and IT1=0. Thus, the Kalman filter update
equations are given by:

F(1) = (1) + N(O)U (1) — 7 (1))
Fit)y=r(t—1)
Noy=(1+M@)~H!

M(t)=N(t—1)

which reduces to exactly the same two equations (Egs.
(12) and (13)) above for computing the running
average.
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Fig. 3. Propagation of conditional probability density in the Kalman filter. The estimate of the state at time 7 — 1 is the Gaussian density P(r|I)
with mean £(# — 1) and covariance N(z — 1). These values are used to predict the mean ¥(¢) and covariance M(z) for the next time step (Egs. (8)
and (9)). Note that this generally results in an increase in uncertainty, as suggested by the increase in variance of the Gaussian density in the figure.
The input at the next time step is used to correct F and M according to the Kalman filter equation, resulting in a new conditional density with
mean f(z) and covariance N(z). This process is repeated for each subsequent time step.

4.2. General form of the Kalman filter

The Kalman filter equation and the running average
rule are both of the form:
New Estimate = Old Estimate + Gain

x Sensory Residual Error

The gain matrix K(¢1)=N()U'Z()~" in Eq. (7) is

known as the Kalman gain. It determines the weight
given to the sensory residual in correcting the old
estimate F. Note that this gain is determined by the
covariances ~ and M, and therefore effectively trades
off the prior estimate T against the sensory input I
according to the uncertainties in these two sources. This
become clear if one rewrites the Kalman filter (Eq. (7))

as:
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F)=N@O)M~"8() + NOUZ() ~'1(x)

A

Thus, the Kalman filter estimate f is essentially a
weighted average of the prior estimate ¥ and the new
sensory input I. In the case of the running average
example, Eq. (11) can be rewritten as:

F(1) = ? At — 1)+ % 1)

In this simple case, the new inputs receive less and
less weight (1/¢) as we receive more and more inputs,
signifying that our estimates 7 for the mean are get-
ting progressively more accurate. In the general case,
however, the degree to which the sensory input influ-
ences the Kalman filter estimate is determined by the
Kalman gain matrix, which does not necessarily de-
crease over time. Instead, it is usually an appropriate
function of the on-going needs of the task at hand
(for example, see Section 6).

4.3. Simplified filter used in the experiments

The general form of the Kalman filter (Eqgs. (7)—
(9)) involves computing matrix inverses and maintain-
ing the state covariance matrix over time. This can
become computationally very intensive even for im-
ages of moderate sizes, besides making the method
susceptible to numerical instabilities. Fortunately,
some simplifying assumptions can be made in the
generative model to make the method more tractable.
The noise covariance matrix can be assumed to be
diagonal and scalar in many cases: X =g2 Also,
rather than recomputing the state covariance N(¢) at
each time step (involving two matrix inverses), one
may approximate this covariance with a constant
fixed and possibly scalar value N,. The Kalman filter
equations then reduce to:

£(2) =1(r) +% UTI(z) — Uk(1)) (14)
B(1)=Vi(t— 1)+ — 1) (15)

Note that using a constant gain N,/¢? in the above
equation can be interpreted as performing gradient
descent on the optimization function of Eq. (6), the
chosen value for the gain dictating the rate of descent
towards a minimum (cf. Daugman, 1988; Pece, 1992;
Olshausen & Field, 1997; Rao & Ballard, 1997a).

5. Learning internal models

The previous section derived the equation for esti-
mating the state r, assuming that the measurement
(or generative) matrix U and the state transition (or
prediction) matrix V' were known. As noted previ-
ously, these matrices together encode an internal

model of the observed dynamic process. Traditionally,
engineers have used hand-coded dynamic models,
picking values for U and V according to the physics
of the dynamic system or other forms of a priori
knowledge of the task at hand (Hallam, 1983; Ayache
& Faugeras, 1986; Broida & Chellappa, 1986;
Matthies, Kanade & Szeliski, 1989; Blake & Yuille,
1992; Dickmanns & Mysliwetz, 1992; Pentland, 1992).
However, in complex dynamic environments, the for-
mulation of such hand-coded models becomes increas-
ingly difficult. A more tractable alternative is to
initialize the matrices U and V to small random val-
ues, and then adapt these values on-line in response
to input data, thereby learning an internal model of
the input environment.

5.1. Learning the measurement matrix

The starting point for deriving ‘learning rules’ for
U and V is the observation that given the optimal
estimate £ for the state r based on some prior values
for U and V, one can obtain new estimates for U and
V using two additional update equations that together
minimize a joint optimization function J. Firstly, let u
and v denote the vectorized forms of the matrices U
and V, respectively. For example, the n x k generative
matrix U can be collapsed into an nk x 1 vector u=
[U'U?...U")" where U’ denotes the ith row of U. We
assume these vectors stochastically drift over time ac-
cording to:

u(z)=u(t—1)+n,(t—1)
v(it)=v(t—1)+n,(t—1)

where n, and n, are stochastic noise processes with
mean i, and f,, and covariances given by II, and II,,
respectively. Note that unlike the dynamics of r, these
equations for u and v do not employ a state transi-
tion matrix since the physical relationships encoded
by the matrices U and V are assumed to be relatively
stable, being perturbed only by random stochastic
noise over time.

As in the case of r, let 1 and Vv be estimates of u
and v calculated from prior data. Thus, @ and ¥ rep-
resent the means of the Gaussian distributions for u
and v before the measurement of the current input L
The corresponding covariances are given by P =
E[(u—a)(u—u)’] and Q= E[(v—¥V)(v—¥)7]. We can
then redefine the optimization function J as:

J=A-Ur)’Z ' A-Ur)+ @ -5 "M~ '(r—¥F)
+u—0P u—a)+v-—vV'0 (v-¥) (16)

In the above, note that we can substitute (I— Ur) =
(I — Ru) where R is the n x nk matrix given by:
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r’ 0 0
R 0 r.T . 0
0 0 r7

As we did in the case of r, by setting dJ/0u=0 and
solving for the optimal estimate @ of u, we obtain the
following Kalman filter-based ‘learning rule’ for the
mean and covariance of u after measurement of input I:

(1) = () + N, (OR@)"Z(t) ~ '(I(r) — R(2)i(2))
N,(t)=(R@®)"Z(t) " 'R(t)+ P(1)~ ")~ (17)

where G(¢) =a( — 1) +i,(t— 1) and P(t)=N,(t— 1)+
IT,(t—1). Note the close similarities between these
equations and the Kalman filter equations for r that
were derived in Section 4. Also note that the learning
occurs ‘on-line’ i.e. all the inputs to the system need not
be provided a priori (as in some approaches relying on
PCA/SVD) but rather, the system continues to learn as
it encounters new inputs, the degree of learning being
controlled by the gain term N, (£)R(¢)7X(¢) L

5.2. Learning the state transition matrix

For deriving the update equations for v from the
optimization function J, we define a k x k? matrix
R(t—1) as:

=T 0 -0
8+ T ...
Rii—1)= o H-Dh 0
0 S0 R—T

where #(¢ — 1) is the Kalman filter state estimate at time
t — 1. This allows us to rewrite the state transition step

(Eq. (8)) as:
B =V(—Di(c—1)+m(— 1)
=R(t—v(t—1) +nm(r— 1)

Substituting the right hand side of this equation for T in
the optimization function J and setting 0J/dv =0, we
obtain the following on-line update rule for the mean
and covariance of v at time ¢ — 1:

=¥+ N, R™M '[r(1) —r'(1)]

NU:(IQTMflﬁ_*_ Qfl)fl

where  ¥(r—1)=9%(—2)+n,(r—2), r()=R(—
Dy(t—1)+m(i—1),and Q(t —1)=N,(t—2)+ I1,(t —
2). Note that in this case, the estimate of V' is corrected
using the prediction error (r(z) —r'(¢)), which denotes
the temporal difference between the actual state and the
predicted state at time ¢ (cf. Kaelbling, Littman &
Moore, 1996).

5.3. Simplified learning rules for U and V

The learning rules for U and V can be simplified by
assuming zero mean noise, diagonal noise covariances
and constant values for the U and V covariances, as
was done in Section 4.3 for r. This results in the
following equations for the update of U and V-

U(t) = U(t) + a[l(t) — UOx(@)]Ir(t)” (18)
Vit—1)=V(— 1)+ p[x(t) —r ()Rt — )T (19)
where U@)=U(t—1), Vi—1D)=V(E-2), r()=

V(t—Di(t—1)+m(t—1) and « =N, /o 2and f =N,/
M are positive constants (learning rates) governing the
rate of descent towards a minimum of the optimization
function given by Eq. (16). Substituting the learned
values U and V in the Kalman filter equations from
Section 4.3, we obtain:

i) =r()+ % U0 @) - U (1) (20)
() =V(t—Di(r—1)+m(r—1) 21

The above learning rules and filter equations were used
in the experiments described in Section 7 with appropri-
ate values for the parameters o, f and N,/é ~? and with
#(0) = 0 and random initial conditions for U and V.

5.4. Convergence of the learning scheme

An interesting question is the issue of convergence of
the overall filtering/learning scheme involving r, U, and
V. Note that in Egs. (18) and (19) above, we did not
specify values for r(z). The Expectation—Maximization
(EM) algorithm from statistics (Dempster, Laird &
Rubin, 1977) suggests that in the case of static input
stimuli (F(z) = #(¢ — 1)), one may use r(¢) = when up-
dating the estimate for U, where f is the converged
optimal state estimate for the given static input. In the
case of dynamic (time-varying) stimuli, the EM al-
gorithm prescribes the use of r(¢) = f(¢|N), which is the
optimal temporally smoothed state estimate (Bryson &
Ho, 1975) for time ¢ ( < N), given input data for each
of the time instants 1,..., N. Unfortunately, the
smoothed state estimate requires knowledge of future
inputs and is computationally quite expensive. For the
experimental results described in this paper, we approx-
imated the smoothed estimates by their on-line counter-
parts, using r(¢)=1f(t) in Eqgs. (18) and (19) for
updating the matrices U and V.

Although the function J is convex in each of the
parameters r, U, and V individually, the function is no
longer convex as a joint function of these variables. As
a result, convergence to a global minimum is not as-
sured. However, the internal model thus learned can
still be used to estimate the state r and our experimental
results suggest that these state estimates are often suffi-
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Fig. 4. Least squares versus robust optimization. The robust optimization function clips large residual errors i.e. those exceeding the threshold ¢
to the constant saturation value ¢, thereby preventing the corresponding outliers in the input data from influencing the optimization process.

cient for the purposes of visual prediction and recogni-
tion. We have found that the method converges as long
as there are enough degrees of freedom available, as
determined by the dimensionality of the state vector,
for the method to learn unambiguous representations
of the input stream (see Section 7.4).

6. Robust estimation, attention and segmentation

The optimization function J used in the previous
sections for deriving the Kalman filter was a quadratic
function of the residual errors (I— Ur). A quadratic
optimization function is however susceptible to outliers
(or gross errors) i.e. data points that lie far away from
the majority of the data points in I (Huber, 1981). For
example, in the case where I represents an input image,
occlusions, background clutter, and other forms of
noise may cause many pixels in I to deviate significantly
from corresponding pixels in the predicted image Ur of
an object of interest contained in the image I. These
deviating pixels need to be treated as outliers and
discounted for in the minimization process in order to
get an accurate estimate of the state r.

The field of robust statistics (Huber, 1981) provides
some useful techniques for preventing gross outliers
from influencing the solution to an estimation problem.
A commonly used technique is M-estimation (maxi-
mum likelihood type estimation), which involves mini-
mizing a function of the form:

J'=> p@—"Ur
i=1

where p is a function that increases much less rapidly
than the square. This ensures that large residual errors
(which correspond to outliers) do not influence the
optimization of J" as much as they would in a quadratic
function. Note that when p equals the square function,
we obtain the quadratic error function we previously
used in J. More interestingly, suppose we define p in
terms of a diagonal matrix S as follows:

J = — Ur)’S(I— Ur)

where the diagonal entries S* determine the weight
accorded to the corresponding data residual (I' — U'r).
A simple but attractive choice for these weights is the
non-linear function given by:

S* =min{l, ¢/I' — Ur)*}

where ¢ is a threshold parameter. To understand the
behavior of this function, note that S effectively clips
the ith summand in J’ to a constant saturation value ¢
whenever the ith squared residual (I' — U’r)*> exceeds
the threshold ¢; otherwise, the summand is set equal to
the squared residual. Fig. 4 contrasts this robust opti-
mization function with the standard least squares opti-
mization function.

By substituting £ ~! = S in the optimization function
J (Eq. (6)), we can rederive the Kalman filter update
equations. The resulting robust Kalman filter for updat-
ing the state estimate is given by:
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(1) = (1) + N(OUTG(t)(1 — U(1)) (22)

where ()= Vi(r—1)+mt—1), N@)={U"GHU+
M@)" )", M@)=VN@E—1D)V"+11(t— 1), and G(¢) is
an n x n diagonal matrix whose diagonal entries at time
instant ¢ are given by:

G =0 if (I(¢) — UR@1)) > c(1)
G* =1 otherwise (23)

Note that in the above expression, we approximated
r(¢) with its best available estimate ¥(z). Similarly, in the
experiments, we used the learned estimates U’ and
for U’ and V, respectively, and a constant value N, for
N(t) as described in Section 4.3. Although these ap-
proximations might result in robust estimates that are
not necessarily globally optimal, the experimental re-
sults using these choices were surprisingly good as
described in Section 7.

The correlates of visual attention in the model are
brought about by the non-linear operation of the ma-
trix G on the estimation process. G can be regarded as
the sensory residual gain or ‘gating’ matrix, which
determines the (binary) gain on the various components
of the incoming sensory residual error. By effectively
excluding any high residuals, G allows the model to
ignore the corresponding outliers in the input I, thereby
enabling it to robustly estimate the state r. By ignoring
the outliers, the recognition system is able to ‘focus
attention’ on a familiar object and estimate its identity
in the presence of occlusions and background clutter.
This is illustrated with concrete examples in the experi-
mental results section.

To understand how the model can perform segmen-
tation, consider the case where the image contains two
familiar objects, one occluding the other. During the
robust estimation process, the ‘dominant’ object (gener-
ally, the one in the foreground) is estimated and recog-
nized first, and the remaining parts of the input image
are treated as outliers. These outliers in turn contain a
crude segmentation of the occluder and they can thus be
used to subsequently ‘focus attention’ on the occluder
to recover its identity. In particular, an outlier mask m
can be defined by taking the complement of the diago-
nal of G (i.e. m’ =1 — G*). By replacing the diagonal of
G with m in Eq. (22) and repeating the estimation
process, one can obtain robust estimates of the image
region(s) that were previously treated as outliers. Such
a sequential recognition process is somewhat similar to
the process of ‘switching attention’ from one object to
another in a visual scene. This process can in principle
be carried out until all regions of the image have been
segmented and recognized. We illustrate this process
with concrete examples in the experimental results
section.

7. Experimental results
7.1. 2D Recognition

To illustrate the ability of the Kalman filter model to
learn and recognize static objects based solely on their
appearance, we used grayscale images of size 105 x 105
pixels, depicting five 3D objects, for training the model
(Fig. 5(a)). The generative matrix U was of size
11025 x 5. The model was thus forced to generate
predictions (reconstructions) of the input images based
on only five basis images that form the columns of U,
resulting in a significant reduction in dimensionality,
from the 11025-dimensional input image space to a
five-element state vector r (this is not very surprising
given that only five training objects were used). The
elements of the matrix U were initialized to small
random values and each column was normalized to
length one, as were the input image vectors. For learn-
ing static inputs, the prediction matrix V is the identity
matrix since we may use F(¢)=#(¢—1) and M(zr)=
N(t — 1). Furthermore, as described in Sections 4.3 and
5.3, we used scalar variances for the various covariance
matrices and approximated the Kalman gain
N()UTS(¢)~ ' with the simpler form (N,/a?)U”, where
No/o? was set to 0.2 with m=0. This results in an
iterative Kalman filter that converges, after a few itera-
tions, to the optimal state estimate £ for a given static
input. After convergence of the model for each input,
the matrix U was updated according to the simplified
learning rule in Eq. (18). The learning rate « was
initialized to 0.8 and subsequently decreased by divid-
ing with 1.08 after each pass through the training set of
images. Figs. 5 and 6 summarize the ongoing effects of
this training process. After training, the model was
tested on images of various objects (Fig. 7). The behav-
ior of the model on objects that it has encountered
previously was as expected, with almost zero recon-
struction errors at all pixels, indicating correct predic-
tion and recognition (Fig. 7(a)). The model shows a
moderate ability to generalize to occluded or incom-
plete inputs, such as in (b).

A better alternative for handling such cases is to use
the robust form of the Kalman filter as we shall illus-
trate in Section 7.5. Perhaps the most interesting test
case is (c), where the input image contains an object
very similar to a training object. The prediction is that
of the training object closest in appearance to the input
stimulus (in this case, the doll). Such behavior may aid
various processes concerned with the categorization of
novel input stimuli and the assignment of inputs to
their closest object classes. On the other hand, the
residual image (rightmost image) accentuates the differ-
ences between the training object and the new stimulus,
preventing a mis-identification of the new stimulus as
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Fig. 5. Learning internal models of objects. (a) The five objects used for training a Kalman filter whose matrix U was initialized to random values.
(b) The evolution of the learning process, showing a relatively rapid increase in prediction accuracy after each exposure to the input stimuli. Fig.
6 summarizes this learning process over time. (c) The basis images (columns of U) learned by the filter after convergence to stable values. Different
linear combinations of these basis images, weighted according to the state vector ¥(¢), give rise to different approximations of the input images,

as shown in (b).

the training object. Such false positive errors have been
the bane of many purely feedforward recognition sys-
tems, which are unable to ‘invert’ their recognition
estimates and verify their hypotheses. A final example
demonstrating the ability of the filter to function as a
novelty detector is shown in Fig. 7(d). Here, a com-
pletely novel object was input to the filter, which gener-

ates an ‘average’ image with relatively large residual
errors at a number of pixel locations. Large residual
errors at many locations in general imply that the
presented stimulus is novel. If the novel stimulus is
deemed to be behaviorally important, it can be made
part of the model’s repertoire of known objects by
allowing the residual errors to drive the adaptation of
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Fig. 6. Learning curve for Experiment 1. The graph shows the average error in image reconstruction (or prediction error), measured as sum of
squared pixel-wise errors, across the five training objects as a function of number of exposures to the set of objects.

the matrix U as specified by the learning rule in Eq.

(18).
7.2. View-based recognition of 3D objects

In a second experiment, we evaluated the ability of
the model to recognize 3D objects by training it on 36
2D views of two objects, each view 10° azimuth apart
from the next (Fig. 8(a)). Such an approach, which is
similar to Tarr and Pinker’s multiple-views-plus-trans-
formation (MVPT) theory of recognition (Tarr &
Pinker, 1989), has also been advocated by Poggio and
Edelman (1990); Edelman and Poggio (1991) and oth-
ers (Murase & Nayar, 1995; Rao & Ballard, 1995;
Black & Jepson, 1998), and is consistent with some
object recognition studies in the monkey by Logothetis,
Pauls, Biilthoff and Poggio (1994) and in humans by
Biilthoff and others (Bilthoff, Edelman & Tarr, 1995).
For computational efficiency, only the 32 x 32 image
patches from the central image region were used for
training (other regions can be analyzed by neighboring
modules in a hierarchical estimation scheme—see, for
example, Rao & Ballard, 1997a). The matrix U was of
the size 1024 x 50.

As shown in Fig. 8, after training, the model pro-
duced accurate predictions (reconstructions) of the
training images with low residuals (top two rows). An
intermediate view that was 5° from the nearest training
view generated a moderately accurate interpolated pre-
diction (middle row). This was apparently sufficient for
the 100% recognition rate that was obtained for 36

different testing views of each object, each test view
being 5° away from the nearest training view. The
second to last row depicts how the effect of occlusions
spreads globally (Leonardis & Bischof, 1996), as seen in
the mediocre prediction and relatively large residuals at
many locations. This is handled via robust estimation
(Sections 6 and 7.5). Finally, a completely novel object
generates an ‘average’ image and large residuals as in
the previous section.

7.3. Spatiotemporal recognition results

The next experiment was intended to verify the abil-
ity of the model to learn spatiotemporal internal models
of possibly articulated stimuli. The model was trained
on an image sequence depicting a set of hand gestures
(Fig. 9). Each image was grayscale and of size 75 x 75
pixels. The matrices U and V (of the size 5625 x 15 and
15 x 15, respectively) were initialized to small random
values and the model was trained using Egs. (18) and
(19). The learning rates o and S were initialized to one
and decreased gradually by dividing with 1.0025 at each
iteration. The constant gain N,y/c? for the filter in Eq.
(20) was set to 0.2. Some of the basis images (columns
of U) obtained after training are shown in Fig. 9
(bottom row).

Fig. 10 illustrates the prediction and recognition of
the gesture sequence using the learned internal model.
The trained Kalman filter was initialized to the zero
vector, causing large residual errors (third row) at the
initial time step. The errors are however corrected
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Fig. 7. Using internal models for object recognition, hypothesis verification and novelty detection. The internal models of objects learned in Fig.
S were tested by using various input images and observing the response of the filter. (a) When an object in the training set is input (left), the
prediction generated is an almost exact reconstruction of the input image (middle), with small residual errors at all image locations (dark image
on the right). (b) Inputs with missing data are handled gracefully, the predicted image being that of the closest training object. However, some
artifacts can also be observed (middle image) with some residual errors in prediction (right). Missing data and occlusions are dealt with in Section
6 (see Figs. 12 and 13). (c) A novel object (a doll) that resembles a training object (another doll) causes the filter to predict the closest resembling
training object, namely, the doll used during training. The residual errors (on the right) highlight the differences between the two similar objects.
(d) A completely novel object results in a prediction resembling a mixture of the training images, with large residual errors. These residuals can
be used to learn the new object (using Eq. (18)) in case the object is deemed relevant to the recognition system.

rapidly due to the Kalman filter dynamics, resulting in
relatively accurate predictions at subsequent time steps.
An interesting exercise, marked by the arrow in the
lower panel of Fig. 10, is to abruptly interrupt the input
sequence with an unexpected subsequence. This causes
a large residual image due to the unexpected stimulus,
but the filter soon corrects itself and begins to recognize
and track the new interposed sequence, as is evident
from the accurate predictions and low residual errors in
the subsequent time steps.

7.4. Hidden state and perceptual aliasing

An important problem that arises during the estima-
tion of the internal state of an observed system is that

of ‘hidden state’ (McCallum, 1996) or ‘perceptual alias-
ing’ (Whitehead & Ballard, 1991; Chrisman, 1992) in
partially observable environments. This problem has
received much attention in the reinforcement learning
literature (for a review, see Kaelbling, Littman &
Moore, 1996). The essence of the problem lies in the
fact that a given observation of the environment by
itself might be insufficient to determine the correspond-
ing state of the environment. A simple example of this
problem is given in Fig. 11(a), which depicts a horizon-
tal bar that first moves down and then up. Note that
the observations made at time steps 2 and 4 are exactly
the same, but in one case, the state is that of moving
down while in the other, it is that of moving up. The
observed image by itself is insufficient to determine the
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Fig. 8. View-based recognition of 3D objects. (a) shows five of the 36 training views used for learning the generative matrix U for two different
3D objects. The trained filter was then tested on 36 intermediate views for each object. Only the image region demarcated by the box was used
for training to preserve computational efficiency; information from other regions can be integrated, for example, using a hierarchical estimation
scheme (Rao & Ballard, 1997a). (b) shows some examples of the responses generated by the trained filter.

current state of the input environment and the next
prediction to be generated (Fig. 11(b)). One needs to
make use of prior contextual information in order to
correctly predict the next input.

Fig. 11(c) and (d) show how the model with a
five-element state vector can learn to disambiguate the
aliased inputs. The five basis images (columns of U)
learned by the model, after several exposures to the
input training sequence, is shown in (c). The learned
matrices U and V together allow the model to disam-
biguate the identical inputs at time steps 2 and 4, as
shown in (d). The vertical bars within the dotted boxes
represent the model’s state predictions F, and ¥, for time
steps 2 and 4. Positive values are denoted by bars
oriented upwards and negative values by bars oriented
downwards. The significant differences between these
two vectors show that the model has learned to repre-
sent the aliased input as two different states, allowing
very different predictions ¥, and ¥, at the next time
steps when multiplied by V. However, despite these
differences, the representations f, and F; were learned
by the model in such a manner that they generate the
same image when multiplied by the generative matrix
U.

7.5. Robust recognition, attention and segmentation

To evaluate the robust form of the model, we used
the objects in Fig. 8 as the training set. During robust
filtering and recognition, the outlier threshold ¢ was
initialized to the sum of the mean plus k standard
deviations of the current distribution of squared resid-
ual errors (I'— U'r)>, where k was initialized to an
appropriately large value (e.g. kK =3). The value of k
was gradually decreased during each iteration in order
to allow the model to refine its robust estimate by
gradually pruning away the outliers, as the model con-
verges to a single object estimate. After convergence,
the diagonal of the matrix G contains zeros in the
image locations containing the outliers and ones in the
remaining locations. Fig. 12(a) depicts how the model
can reject outliers and produce an accurate prediction
of an occluded object (compare with Fig. 8(b)).

The outliers (white) produce a crude segmentation of
the occluder, which can subsequently be used to focus
‘attention’ on the occluder and recover its identity. An
outlier mask m can be defined by taking the comple-
ment of the diagonal of G (i.e. m'= 1 — G*'). By replac-
ing the diagonal of G with m in Eq. (22) and repeating
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Fig. 9. Learning sequences of gestures. The top row shows a cyclic image sequence of hand gestures used to train a Kalman filter. The bottom
row shows six of the 15 basis images (columns of the matrix U) learned after exposure to the cyclic training sequence.

the estimation process, one can obtain robust estimates
of the image region(s) that were previously treated as
outliers. Such a two-step recognition process is depicted
in Fig. 12(b), where the image is a combination of the
two training objects in Fig. 8. The model first recog-
nizes the ‘dominant’ object, which was generally ob-
served to be the object occupying a larger area of the
input image or possessing regions with higher contrast.
The outlier mask m is subsequently used for extracting
the identity of the second object (lower arrow).

Results from a second experiment using images with
slightly more complex forms of occlusions and clutter
are shown in Fig. 13. Static grayscale images of size
65 x 105 depicting two 3D objects were used for train-
ing the model with the matrix U of size 6825 x 5 (Fig.
13(a)). As shown in (b), the model was successful in
segmenting and recognizing the training object in spite
of occlusion and background clutter. The case where
one training object is occluding another is shown in (c).
Both objects were successfully recognized by the model
whereas the standard least-squares Kalman filter was
unable to resolve either of the two objects as shown in
the image at the extreme right.

To illustrate attention and segmentation during spa-
tiotemporal recognition, we trained the model on three
image sequences: (1) a horizontal bar moving down-
wards; (2) a vertical bar moving to the right, and (3) an
expanding circle. Each sequence consisted of four 38 x
38 images. The generative matrix U and the prediction
matrix V were initialized to random 1444 x 15 and
15 x 15 matrices, respectively. These matrices were
adapted according to Egs. (18) and (19) during re-
peated exposures to the training sequences. In the first
test after training, we added uniformly distributed addi-
tive noise to the images in the expanding circle se-
quence. The robustness parameter ¢ was set to the sum

of the mean plus 1.5 standard deviations of the current
distribution of squared residual errors. As shown in
Fig. 14(a), the model produced relatively accurate pre-
dictions of the noisy images, when it was primed with
the first image of the expanding circle sequence.

A more interesting case involving ambiguous stimuli
is shown in Fig. 14(b) and (c). The input in this case is
comprised of a sequence of three images, each contain-
ing both a horizontal and a vertical bar. Note that the
model was trained on both a horizontal bar moving
downwards as well as a vertical bar moving rightwards.
Given ambiguous stimuli containing both these stimuli,
the model interprets the input differently depending on
the initial ‘attentional’ priming input. As shown in Fig.
14(b), when the initial input is the first image from the
horizontal bar sequence, the model ‘pays attention’
only to the horizontal bar as it moves downwards,
ignoring the vertical bars which are treated as outliers.
On the other hand, when the initial priming input is a
vertical bar as shown in (c), the model interprets the
same input sequence as a vertical bar moving right-
wards, not ‘paying attention’ to the extraneous horizon-
tal bars in the image sequence. These results illustrate
how a learned internal model can cause the same
stimulus to be perceived differently depending on cer-
tain priming inputs that can engage and ‘lock’ the
predictive filter to certain aspects of the input. Such a
mechanism may help provide explanations for visual
illusions such as the Vase-or-Faces illusion and bi-sta-
ble percepts such as the Necker’s cube phenomenon.

In a second set of experiments involving spatiotem-
poral recognition, we tested the trained model from
Fig. 9 on a cyclic image sequence of hand gestures with
occlusions and clutter. The robustness parameter ¢ was
computed at each time instant as the sum of the mean
plus 0.3 standard deviations of the current distribution
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Predictions

(d)

Fig. 11. Learning to disambiguate aliased inputs. (a) shows an image sequence depicting a horizontal bar, first moving down and then up. Note
that the same image is encountered at time steps 2 and 4, but different images are to be predicted at the next time step, as shown in (b). This
is the problem of perceptual aliasing/hidden state, where the current input alone is insufficient to determine the current state and predict the next
input. (c¢) and (d) show how the adaptive filter handles this problem. The five basis functions (columns of U) learned by the filter are shown in
(c). Using these basis images (matrix U) and the learned prediction matrix V, we see in (d) how the filter has learned two different internal state
representations F; and F; for the same (aliased) image at time steps 2 and 4. This allows the filter to disambiguate the aliased input and accurately
predict the two very different stimuli at the next time step in each of the two cases.

of squared residual errors. The model was initialized with a few cycles of exposure to the occluded image sequence,
the first occluded gesture image in the sequence. As the model converged to stable estimates of the gesture
shown in Fig. 15, the model exhibits an initial transient images as shown in the bottom panel of Fig. 15. The
phase where the predictions are not completely accurate occluding objects were also successfully segmented as

and the outliers are yet to be detected. However, after shown in the last row of images in the figure.



1982 R.P.N. Rao /Vision Research 39 (1999) 1963—1989

8. Discussion

In this paper, we have suggested that the problem of
visual perception can be viewed as one of optimally
estimating the internal state of the visual environment
with the help of an internal model that is learned
directly from the input images. We derived a mathe-
matically rigorous model of visual perception and
learning using Bayesian principles (Freeman, 1994;
Knill & Richards, 1996; Kersten, 1999) and the statisti-
cal theory of Kalman filtering. Update rules for predic-
tion, robust estimation, and learning of internal models
were derived from first principles using an optimization
function based on maximizing the posterior probabili-
ties of model parameters given the observed data. Ex-
perimental results were provided to demonstrate the
potential usefulness of such a model in understanding
specific aspects of visual perception such as:

1. How internal models of objects and dynamic stimuli
can be learned given only their input images.

2. How these learned internal models can be used for
recognition, categorization, hypothesis verification,
novelty detection, and prediction.

3. How the pervasive problem of perceptual aliasing
may be resolved by learning unambiguous internal
representations.

4. How top—down expectations and bottom-up sig-
nals can be integrated to recognize and segment
objects in the presence of occlusions and back-
ground clutter, and

5. How objects of interest can be attended to in the
presence of other objects or noise in the input

stream.
Robust
Input Estimate Outliers
&-2 &
a7 S
Robust Robust
Input Estimate1 Outliers Estimate 2
) & ]

®) imem
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Fig. 12. Robust recognition, attention and segmentation. (a) depicts
the robust estimation of object identity in the presence of an occlu-
sion. The portions of the input image treated as outliers (the diagonal
of the gating matrix G) are shown in white in the rightmost image. (b)
demonstrates the case where the input contains combinations of the
training objects (same objects as in Fig. 8). The model first converges
to one of the objects (the ‘dominant’ one in the image). The identity
of the second object is then retrieved using the complement of the
outlier mask produced during the recognition of the first object.

6. How ambiguous stimuli may be parsed differently
depending on how the recognition system is
‘primed.’

Unlike some previous appearance-based approaches
such as those relying on PCA or SVD, the basis vectors
in the proposed approach can be non-orthogonal and
overcomplete. Rather than being restricted to static
inputs, the approach allows appearance-based dynamic
models of spatiotemporal image sequences to be
learned on-line. Also, instead of being a linear purely
feedforward function of the input as in previous ap-
proaches, the state vector is optimized on-line to suit
the choice of the basis vectors. An additional favorable
property of the approach is that it allows appropriate
prior distributions for the model parameters to be
hand-picked or learned so that the basis vectors can
capture the higher-order statistics of the data rather
than being restricted to pairwise statistical correlations
as in the case of PCA. For example, a straightforward
extension to the present model is to use a rectified
Gaussian prior on the state vector rather than a Gaus-
sian prior (see Rao & Ballard, 1997b). Other alterna-
tives for the prior on the state vector and the basis
matrices can be found in Harpur and Prager (1996);
Lewicki and Sejnowski (1998); Olshausen and Field
(1996) and Rao and Ballard (1997a).

8.1. Some weaknesses and limitations of the approach

An obvious shortcoming of the approach is the as-
sumption of linearity when modeling the measurement
and state transition processes (Section 3). Indeed, this is
the primary weakness of the standard Kalman filter. It
is therefore not surprising that non-linear alternatives
such as the extended Kalman filter have been proposed
(Maybeck, 1979). The model presented here readily
generalizes to the non-linear extended Kalman filter
case (see for e.g. Rao & Ballard, 1997a). Unfortunately,
the introduction of nonlinearities often complicates the
corresponding estimation process, forcing the use of
approximations (such as Taylor series based approxi-
mations) to make the mathematical derivations
tractable. As a result, many important properties such
as optimality and stability may be lost. In this paper,
we discussed the use of some limited forms of nonlin-
earities, such as making the covariance matrices nonlin-
ear functions of the prediction errors in order to
facilitate robust estimation, and using appropriate prior
distributions on model parameters such as a rectified
Gaussian prior. These limited forms of nonlinearities
may help ameliorate some of the weaknesses of the
standard Kalman filter, while at the same time retaining
its favorable properties. In the context of biological
modeling, it has been argued that some cortical neurons
may very well operate linearly in much of their dynamic
range (Kohonen, 1988; Ferster, 1994). Kohonen, in
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Fig. 13. Robust recognition: Experiment 2. (a) Images used to train the model. (b) Occlusions, background clutter, and other forms of noise are
treated as outliers (white regions in the third image, depicting the diagonal of the gating matrix G). This allows the model to simultaneously
segment and recognize the training object, as indicated by the accurate reconstruction (middle image) of the training image based on the final
robust state estimate. (c) In the more interesting case of the training objects occluding each other, the model converges to one of the objects (the
‘dominant’ one in the image). The second object is recognized by taking the complement of the outliers (diagonal of G) and repeating the
estimation process (third and fourth images). The fifth image is the image reconstruction obtained from the standard (least squares derived)
Kalman filter estimate, showing an inability to resolve or recognize either of the two objects.

particular, argues that strong nonlinearities at the single
neuron level are generally seen more often in evolution-
arily older (subcortical) structures than the more re-
cently evolved neocortex. In addition, some of the
complex neural responses that appear nonlinear when a
neuron is viewed in isolation can be explained within a
hierarchical model as occurring due to feedback inhibi-
tion and other limited forms of local nonlinear interac-
tions (Rao & Ballard, 1997a, 1999).

Another possible limitation of the model is the as-
sumption of Gaussian probability distributions when
modeling the state and noise processes. Although such
an assumption is partially supported by the Central
Limit Theorem (Feller, 1968), the unimodality of the
Gaussian distribution does not allow a simultaneous
representation of multiple object hypotheses such as in
a cluttered scene (Isard & Blake, 1996). However, this
limitation is handled in the present model by allowing
objects other than the primary one to be treated as
outliers. These outliers can be subsequently recognized
in a sequential fashion as demonstrated in Section 6.

A related limitation is the restriction to modeling
(first-order) Markov processes, in which the next state
is assumed to depend only on the preceding state (Eq.
(5)). This is not as serious a limitation as it seems
because (a) any finite-order Markov process, where the
next state depends on a finite number of past states, can
be represented as a first-order Markov process (Bryson
& Ho, 1975), and (b) since the matrices U and V are
not fixed but can be adapted according to the input
stimuli, many processes that may initially appear to be
non-Markov can nevertheless be handled by the adap-
tive filter by finding appropriate U and V such that the
resulting states disambiguate any aliasing in the input
stream. A simple example of this adaptive search pro-
cess in the context of an apparently non-Markovian
input stream was given in Section 7.4.

8.2. Invariance to transformations

An important problem that we have not addressed in
this paper due to space constraints is the issue of
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Fig. 14. Robust segmentation and recognition of noisy and ambiguous spatiotemporal stimuli. (a) demonstrates the ability of the robust filter to
tolerate additive white noise in the input images by treating noisy pixels as outliers. (b) and (c) show how the same ambiguous stimuli at time steps
t =1 through ¢ = 3 are interpreted differently based on the initial ‘priming’ input. In case (b), the stimulus is interpreted as a horizontal bar moving
downwards, where as in case (c), it is interpreted as a vertical bar moving rightwards. The outliers reflect the corresponding parts of the input that

were ignored during interpretation of the stimuli.

transformation invariance: how can the state estimates
calculated by the Kalman filter (‘What’) be made
invariant to object transformations (“Where’) such as
translations, rotations, and scaling? A simple but
attractive solution is to model the transformed image
I(x) as a function of a previously encountered reference
image I(0). Here, x is a vector denoting a distributed
representation of the relative transformation (‘Where’)
with respect to the reference image. In particular, one
can expand the transformed image I(x) in a Taylor
series about an original reference point 0:

o1(0)
0x
For small transformations, the higher order terms can

be ignored and their effect can be modeled as stochastic
noise:

I(x) =1(0) + X + higher order terms

01(0)
0x
where Al(z) =1I(x) —I(0) and n is assumed to be a
Gaussian noise process. The Jacobian matrix J = 01(0)/
0x can be approximated as a linear function of the

AI(t) = x(1) + n(t) 24)
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Fig. 15. Robust segmentation and recognition of occluded gestures. The filter from Fig. 9 that was trained on a cyclic image sequence of hand gestures was tested for robustness in the presence
of occlusions and clutter. The top panel shows the initial transient phase of the robust filtering process (after starting with the leftmost occluded input). The bottom panel depicts the steady state
behavior of the robust filter, showing relatively accurate predictions of the occluded hand gestures and a corresponding set of segmented outlier objects.
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reference image I(0). In particular, if J; is the ith
column of J we may use J = D;I(0) where D, is an n x n
matrix whose rows are differential operators.

It is a straightforward exercise to formulate an opti-
mization function based on the generative model in Eq.
(24) and derive an optimal estimation rule for the
current transformation state X and a learning rule for
the matrices D; (see Rao & Ballard, 1998a). Note that
these rules require the original image I(0), which is the
top—down predicted image representing the current ob-
Jject hypothesis (‘What’), to be supplied by the object
estimation network maintaining the current object state
r. Thus, the model for invariant recognition consists of
two cooperating networks, one that estimates object
identity r as given by the reference image I(0) and
another that estimates the relative transformation x. An
especially favorable property of such an arrangement is
that the estimate of object identity remains stable in the
first network as the second network attempts to ac-
count for any transformations being induced in the
image plane, appropriately conveying the type of trans-
formation being induced in its estimate for x. Another
favorable property is that the transformation estimates
x remain the same even when different objects are being
transformed in an identical manner. This independence
and decoupling of the transformation estimates x from
object estimates r is crucial for learning general sensory-
motor routines that can be uniformly applied across
objects without regard to object specific features such
as visual markings or color of the cup that are generally
irrelevant to motor programming. Finally, the problem
of large image transformations can be handled in at
least two ways: (a) one may view the differential opera-
tors D; as generators of lie transformation groups and
use a generative model based on a matrix exponential
(see Rao & Ruderman, 1999), or (b) one may use a
hierarchical estimation framework involving coopera-
tive estimation of object state and relative transforma-
tion at multiple scales (Black & Jepson, 1998), similar
to the hierarchical scheme suggested for image features
in (Rao & Ballard, 1997a, 1999). Interestingly, the
computational dichotomy between the estimation of
‘What’ and ‘“Where’ parameters in such a model paral-
lels the well-known segregation between the ventral
occipitotemporal and the dorsal occipitoparietal path-
ways observed in the primate neocortex (Ungerleider &
Mishkin, 1982; Mishkin, Ungerleider & Macko, 1983;
Van Essen & Maunsell, 1983; Van Essen, 1985).

8.3. Hierarchical estimation and prediction

Most natural phenomena manifest themselves over a
multitude of spatial and temporal scales. For example,
the rich class of stochastic processes possessing 1/f”
power spectra exhibit statistical and fractal self-similari-
ties that can be satisfactorily captured only in a multi-

scale framework (Chou, Willsky & Benveniste, 1994).
Modeling such phenomena at a single spatial and/or
temporal resolution generally leads to an incomplete
and often incorrect understanding of the observed phe-
nomenon. There has consequently been much recent
interest in multiscale signal processing methods. Tech-
niques such as image pyramids (Cantoni & Levialdi,
1986), wavelets (Daubechies, 1992), and scale-space the-
ory (Lindeberg, 1994) have found wide applications in
computer vision and image processing.

The Kalman filter-based model studied herein can be
extended to the hierarchical case where (a) each hierar-
chical level uses the output state of its immediate
predecessor as input, with only the lowest level operat-
ing directly on the sensory input, and (b) the hierarchi-
cal levels operate over progressively larger spatial and
temporal contexts, thereby allowing the development of
progressively more abstract spatiotemporal representa-
tions as one ascends the hierarchy. Such an arrange-
ment allows the important aspects of the input
environment to be encoded and interpreted succinctly
at multiple spatial and temporal scales. An additional
computational advantage of such a hierarchical scheme
is the possibility of faster learning and faster conver-
gence to the desired estimates as is often witnessed in
multigrid methods for optimization (Hackbusch, 1985).
We refer the interested reader to Rao and Ballard
(1997a, 1999) for more details.

8.4. The optimal estimation model and the visual cortex

The visual cortex has been previously characterized
as a roughly hierarchical network composed of many
distinct interconnected areas (Van Essen & Maunsell,
1983; Felleman & Van Essen, 1991). This hierarchical
characterization is based on the laminar patterns of
origins and terminations of the connections between the
different visual cortical areas. This hierarchical struc-
ture, together with the reciprocity of connections be-
tween areas and the distinctive laminar connections
within a given area, makes the visual cortex especially
well-suited to implement a hierarchical Kalman filter-
like prediction and estimation mechanism. For in-
stance, the feedback connections from a higher area
may carry the predictions UT of lower level neural
activities I, while the feed-forward connections may
convey to the higher level the differences or residuals
(I — UT) between the predictions and the actual lower
level activities (Rao & Ballard, 1997a, 1999). These
residuals would allow the visual cortex to compute
robust optimal estimates of events occurring in the
visual environment based on a hierarchical and dis-
tributed internal model. The internal model, as encoded
by the parameters U and V, could be instantiated
within the synaptic weights of neurons located in spe-
cific cortical laminae (see for instance Rao & Ballard,
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1997a) and could be learned or refined by the organism
during periods of exposure to the visual environment.
Similar ideas have been suggested by a number of other
authors in a variety of contexts (MacKay, 1956; Gross-
berg, 1976, Barlow, 1985; Harth, Unnikrishnan &
Pandya, 1987; Albus, 1991; Mumford, 1992; Pece, 1992;
Pentland, 1992; Hinton, Dayan, Frey & Neal, 1995;
Kawato, Hayakawa & Inui, 1993; Dayan, Hinton, Neal
& Zemel, 1995; Softky, 1996).

Given that the cortex possesses roughly the same
neuroanatomical input—output structure and pattern of
connections across many different cortical areas
(Creutzfeldt, 1977; Barlow, 1985; Pandya, Seltzer &
Barbas, 1988), a reasonable question to ask is whether
a given approach to cortical function is general enough
to be uniformly applicable to different cortical areas
without regard to input modality. A reassuring feature
of the optimal estimation model is that it is independent
of the type of input signals being estimated. Thus, the
possibility exists that in addition to visual signals, the
approach can also be applied to the estimation and
prediction of, for example, auditory, olfactory or motor
signals as well. Exploring this possibility remains a
promising subject for future investigations.
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