
The Mystery of “b := (b = false)”
Stuart Reges

University of Washington
Computer Science & Engineering

Seattle, WA 98195
+206.685.9138

reges@cs.washington.edu
ABSTRACT
This paper describes some unusual patterns that emerged from a
statistical analysis of the 1988 Advanced Placement Exam in
Computer Science. Most multiple-choice questions on the exam
had few significant correlations with other parts of the exam. But
a small set of five questions had a nontrivial correlation with
many parts of the test. One question in particular demonstrated
such correlations. It asked about the effect of the assignment
statement “b := (b = false)” for a boolean variable b. One
interpretation of this data is that these questions are testing general
programming aptitude. The paper presents the analysis along with
a discussion of the possible implications.

Categories and Subject Descriptors
K3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms: Human Factors, Algorithms.

Keywords: CS1, CS2, Mental Models.

1. INTRODUCTION
The Advanced Placement Exam in Computer Science (AP/CS) is
an exam developed by The College Board and administered by the
Educational Testing Service to allow students to get credit for
studying college-level computer science in high school [1]. The
exam is divided into A and B sections that roughly correspond to
the traditional CS1 and CS2 classes described by the ACM. The
exam is offered in an AB format that tests both CS1 and CS2
material and in an A-only format that tests just CS1 material.

In 1988 the author served as the “Chief Reader” for AP/CS. In
that role he was responsible for analyzing student performance on
the exam and advising the development committee and ETS about
how best to evaluate student performance. 1988 was a pivotal
year because it was the first in which the A-only format was
offered. The author was given access to the raw data for the more
than 10 thousand students who took the exam and he performed
an extensive analysis using SPSS to determine what could be
learned from traditional statistical analyses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

A striking pattern emerged from this analysis. A small group of
questions that the author dubbed the “powerhouse questions”
showed up over and over again as being the most predictive of
success on the exam. One question in particular stood out as
having this predictive ability.

The author expected to find a pie-slice pattern in the set of
correlations. It seems likely that questions will fall into various
slices with loop questions correlating with loop questions,
recursion questions correlating with recursion questions, and so
on, as in the following diagram:

Instead what emerged was a donut-like shape with a small core of
questions (the powerhouse questions) accounting for the vast
majority of the nontrivial correlations with the rest of the exam.

This donut pattern suggests that the powerhouse questions are
testing computer science ability in a more fundamental way than
the other questions.

2. APTITUDE AND MENTAL MODELS
Computer Science educators have for years complained that
introductory courses seem to be divided between a group of
students who “get it” and a group of students who do not. Donald
Knuth has written about this phenomenon:

“Educators of computer science have repeatedly observed that
only about 2 out of every 100 students enrolling in introductory
programming classes really resonate with the subject and seem
to be natural-born computer scientists…I conclude that roughly
2% of all people ‘think algorithmically,’ in the sense that they
can reason rapidly about algorithmic processes.” [5]

Many computer science education researchers have been
exploring the question of what factors predict success in CS1 and
CS2 [2, 7]. In fact, Knuth was motivated by just such a study. It
was an unpublished study conducted by Gerrit DeYoung in which
he found that a measure of quantitative reasoning was not a
predictor of success in a course for CS majors but was a

reasonable predictor of success in a course for nonmajors.
Knuth’s tentative conclusion was that there is some kind of CS
aptitude that is not measured by standard tests of quantitative
reasoning and that students who lacked that ability were instead
relying on general quantitative aptitude.

This theory has become more popular recently. Several
researchers have been attempting to identify the mental models
that students have in first-year programming courses. Dehnadi
and Bornat [4] claim to have a test that can predict success or
failure in a first-year programming course. There seems to be
some question as to the effectiveness of their model with some
obtaining similar results [6] and others failing to reproduce the
results [3].

The pattern of correlations for the AP CS powerhouse questions
won’t settle the question of whether there is a special aptitude that
computer scientists have or whether success in CS1 can be tested
before a student takes the course. But the powerhouse questions
at least might serve to point us in the direction of what to pay
attention to in exploring these difficult questions.

3. STATISTICAL RESULTS
This section summarizes the statistical results for the 1988 exam.
Data for all 7,374 students taking the full AB exam were used to
derive Pearson’s correlation coefficients. Any correlation below
0.2 was eliminated as being too low to consider. Even a
correlation of 0.2 is not particularly strong, but it does seem to
indicate some kind of underlying relationship.

The AB exam consisted of four parts that were completed
separately:

• A multiple-choice: 35 questions

• A free-response: 3 questions

• B multiple-choice: 15 questions

• B free-response: 2 questions

The programming language in use at the time was Pascal.

Multiple-choice questions were scored as 1 for a correct answer,
-0.25 for an incorrect answer (to account for random guessing)
and 0 for a skipped question.

3.1 A Multiple-Choice Correlations
There were 35 multiple-choice questions on the A part of the test,
which meant there were 595 correlations to compute for distinct
pairs of questions. Of those, 56 were correlated at the level of 0.2
or higher. So, in general, there weren’t many correlations
between multiple-choice questions because this represents just
9.4% of the possible correlations. The number of correlations is
not nearly as surprising as the pattern. As Table 1 indicates, 46 of
the 56 correlations were accounted for by just 5 questions, which
will be referred to as the “powerhouse questions” for the
remainder of this paper.

If these five questions had been eliminated from the exam, the
remaining 30 questions would have just 10 correlations of 0.2 or
higher out of a potential 435 correlations, which is less than 2.3%.
By contrast, question 23 correlated at 0.2 or higher with over half
of the other A questions.

It is worth noting that half of the 10 correlations of 0.2 or higher
that were not included in Table 1 came from a single question.
The question is similar in nature to the other five, but it appeared
late on the exam (question 32) and statistical evidence suggests
that it was not reached by approximately one-third of the students.
As a result, it might be a powerhouse question that wasn’t quite
able to prove itself because the test was too long.

Question 14 15 18 20 23
3 0.22
5 0.23 0.22 0.23 0.24
6 0.23 0.24
10 0.22 0.21 0.21 0.24
11 0.21 0.21 0.21 0.22
12 0.20 0.21 0.20 0.23
13 0.27 0.28 0.24 0.25 0.29
14 - 0.55 0.26 0.26 0.34
15 0.55 - 0.29 0.29 0.38
16 0.20 0.21
17 0.24 0.25 0.29 0.30 0.25
18 0.26 0.29 - 0.30 0.31
19 0.24 0.25 0.26 0.25 0.27
20 0.26 0.29 0.30 - 0.25
22 0.21 0.21 0.22
23 0.34 0.34 0.31 0.35 -
24 0.25
25 0.24
26 0.22
28 0.21 0.24
32 0.21 0.24

total 10 13 11 13 19
% 29% 38% 32% 38% 56%

Table 1: Correlations of Powerhouse Questions against
other A Multiple-Choice Questions

3.2 B Multiple-Choice Correlations
There were only 15 questions on the B multiple-choice section of
the exam, so there is less data to work with. Of the 105 possible
correlations, 14 of them (13.3%) were 0.2 or higher. A subset of
three questions accounted for 8 of these 14 correlations, but no
question had more than three questions that it correlated with at
the level of 0.2 or higher. So there weren’t any real powerhouse
questions within the B questions.

A more interesting pattern emerges when comparing the group of
35 A multiple-choice questions against the group of 15 B
multiple-choice questions. It is likely that there would be few
correlations because they cover material from two different
courses (CS1 and CS2), and, in general, there isn’t much of a
correlation. Only 46 of the 525 correlations between the two
groups were at the level of 0.2 or higher, which is just 8.8% of the
possible correlations. The striking statistic is that almost all of
them come from the powerhouse questions, as indicated in Table
2.

Consider, for example, question 23. It has a nontrivial correlation
with 56% of the A questions, but there is no particular reason to
believe that it would correlate with the more advanced material on
the B test. Yet, it correlates with even more of the B questions
(67%). It correlates with two-thirds of the B questions even
though the B questions don’t tend to correlate with each other.

Question 14 15 18 20 23
36 0.21 0.21 0.21 0.25 0.24
39 0.20 0.22 0.24 0.23
40 0.21 0.21 0.21 0.23
41 0.21 0.21 0.41 0.22 0.23
42 0.21 0.23
43 0.21 0.20 0.21 0.21 0.23
45 0.22 0.23 0.22 0.24 0.26
47 0.22 0.23 0.24 0.23
49 0.20 0.22 0.21
50 0.23 0.26 0.22 0.22 0.26

total 8 9 6 9 10

% 53% 60% 40% 60% 67%
 Table 2: Correlations of Powerhouse Questions against

B Multiple-Choice Questions

As another example of how pronounced this effect is, consider the
powerhouse questions separately from the rest of the A questions.
The remaining 30 A questions have a mere 4 correlations with the
15 B questions (less than 1% of the 450 possible correlations).
Yet with the powerhouse questions, 42 of the possible 75
correlations are 0.2 or higher (56%).

3.3 Free Response Correlations
The free-response questions involve writing substantial amounts
of code. For example, one of the B free response questions
involved reversing a linked list and the other involved
constructing the mirror image of a binary tree. The free response
questions are graded on a 10-point scale (0 to 9).

It is difficult to get a strong correlation between multiple-choice
questions and free-response questions because the multiple choice
questions have just three possible scores (1, 0 and -0.25) while the
free response involves 10 possible scores. Even so, there were a
number of multiple-choice questions that correlated at the level of
0.2 or higher with free-response questions and once again the
powerhouse questions were at the top of the list.

The first A free response question was to write a function that
would return the number of digits in its integer argument. Table 3
shows the top five correlations against all 50 multiple-choice
questions (both A and B). These are exactly the powerhouse
questions, with the now familiar question 23 topping the list.

Rank Question Correlation
1 23 0.36
2 20 0.34
3 15 0.34
4 18 0.32
5 14 0.30

Table 3: Top Five Correlations with Multiple-Choice
for A Free-Response Question 1

The second A free-response question involved implementing a
type for storing elapsed time. It had a nearly identical set of
correlations with the powerhouse questions again taking the top
five spots.

The third A free-response question involved manipulating a two-
dimensional array with a “zoom” operation (replacing each
integer with an n-by-m grid of that integer). It had a slightly
different pattern in its top five, as shown in Table 4.

Rank Question Correlation
1 24 0.39
2 23 0.37
3 15 0.36
4 32 0.34
5 14 0.34

Table 4: Top Five Correlations with Multiple-Choice
for A Free-Response Question 3

Question 24 was about graphics, which might explain why it
correlated so highly with a question about two-dimensional
arrays. After it we again see question 23 at the top of the list. We
also see question 32, which was the question that almost qualified
to be a powerhouse question. So in this case three of the five
powerhouse questions are in the top five (the other two were
ranked 7th and 8th).
It is again not that surprising that A multiple-choice questions are
the ones that correlate with A free-response questions. The bigger
surprise is that the powerhouse questions also top the lists for the
B free-response. For example, the first B free-response question
involved reversing a linked list. One would expect that the
linked-list multiple-choice question would correlate with it, but
not so. The five powerhouse questions were the top five
correlations, with question 23 again with the highest correlation.

Similarly for the second B free-response question which involved
constructing the mirror image of a binary tree, four of the five top
correlated questions came from the powerhouse questions with
question 23 again in the top position.

3.4 A-Only vs AB
A total of 3,344 students took the A-only version of the exam. As
a result, they didn’t answer any of the B questions. But they
answered the exact same multiple-choice and free-response
questions. Across the board the A-only students scored lower
than the AB students, but it was interesting to note that the six
questions that had the greatest difference between the two
populations were the five powerhouse questions along with
question 32, as indicated in Table 5.

Question
AB

correct
A-Only
correct Delta

20 69.2% 38.7% 30.5
23 60.0% 35.3% 24.7
15 66.3% 43.8% 22.5
32 46.6% 25.7% 20.9
14 65.2% 46.0% 19.2
18 71.7% 52.6% 19.1

Table 5: Multiple-Choice Questions with Greatest Difference
in Performance (A-only vs AB)

4. THE POWERHOUSE QUESTIONS
What exactly do the powerhouse questions look like? Let’s
explore question 23 in depth because it had the most nontrivial
correlations. The exact text of the question is reproduced below:

23. If b is a Boolean variable, then the statement
b := (b = false) has what effect?

(A) It causes a compile-time error message.
(B) It causes a run-time error message.
(C) It causes b to have value false regardless of its value just

before the statement was executed.
(D) It always changes the value of b.
(E) It changes the value of b if and only if b had value true

just before the statement was executed.
Only 5.4% of the students skipped the question. Of those who
answered, 60% got it right. And getting this question right turned
out to be a predictor of success on most of the rest of the exam,
including solving complex problems like reversing a linked list.
To answer this question correctly, a student has to be able to read
the code and simulate its execution. They also have to be able to
identify the correct answer among the given choices.
Questions 18 and 20 both involved understanding recursive code.
Question 18 asked students what output is produced by the call
Wow(16) for the following procedure:
procedure Wow(n : integer);
begin
 if n > 1 then Wow(n div 2);
 write(n, ' ')
end;

Question 20 involved reasoning about necessary and sufficient
conditions for the following function to return an answer:
function WhatIsIt(x, n: integer) : integer;
begin
 if n = 1 then
 WhatIsIt := x
 else
 WhatIsIt := x * WhatIsIt(x, n – 1)
end;

In both cases, students had to reason about execution and
understand what a mysterious bit of code will do.
Questions 14 and 15 both involved the following code
const Size = 10;
type GridType = array[1..Size, 1..Size] of char;
function YesOrNo(Grid: GridType;
 Row, Colm : integer;
 Mark : char) : Boolean;
var i, Count : integer;
 OK : Boolean;
begin {YesOrNo }
 Count := 0;
 for i := 1 to Size do
 if Grid[i, Colm] = Mark then
 Count := Count + 1;
 OK := (Count = Size);
 Count := 0;
 for i := 1 to Size do
 if Grid[Row, i] = Mark then
 Count := Count + 1;
 YesOrNo := (OK or (Count = Size))
End; {YesOrNo }

Question 14 asks students to identify whether the function will
return true for certain scenarios. Question 15 asks students to
identify the description that best characterizes the computation
performed by the function.
Question 32, which was almost a powerhouse question, also
involved reasoning about recursive code. Students were shown a

template for a recursive multiplication function and were asked to
identify the pair of statements (base case and recursive case) that
would allow the function to work as intended.

5. POWERHOUSE AS A TEST OF
APTITUDE?
So what do the powerhouse questions have in common? They all
involve reading and understanding code. They all test whether
students have a proper mental model of program execution. And
they involve some of the most central concepts from the first year
programming course: logic, recursion and two-dimensional arrays.

The author had the opportunity to present these results to a group
of Stanford faculty, including the late Bob Floyd. Floyd, who had
taught introductory programming many times, commented that the
greatest single predictor he had noticed for success was whether
students had a mental model of program execution, whether they
could “play computer” in their head. He commented that these
questions seemed to be very good at measuring that ability.
So we are left with the question of whether the powerhouse
questions are a kind of CS IQ test measuring Knuth’s algorithmic
thinking ability. It would help explain why they correlate so
frequently with so much of the test.
For example, consider question 23. On its surface, it seems to test
just simple assignment with boolean variables. And yet it was the
best at predicting which students would be able to reverse a linked
list or to recursively construct the mirror image of a binary tree.
So it seems likely that it is testing something fundamental about a
student’s ability to approach computer science problems.

Knuth provides an intriguing intuition about this in talking about
the difference between mathematical reasoning and algorithmic
thinking:

“The other missing concept that seems to separate
mathematicians from computer scientists is related to the
‘assignment operation’ :=, which changes values of quantities.
More precisely, I would say that the missing concept is the
dynamic notion of the state of a process. ‘How did I get here?
What is true now? What should happen next if I’m going to get
to the end?’ Changing states of affairs, or snapshots of a
computation, seem to be intimately related to algorithms and
algorithmic thinking.”[5]

Question 23 is about assignment for a boolean variable that
requires thinking about its value before the assignment statement
and what value it will have afterwards. Question 18 involves
simulating the execution of a recursive procedure and question 20
involves reasoning about necessary and sufficient conditions for
termination of a code segment, both of which involve reasoning
about the changing “state of a process.” Questions 14 and 15
involve reading code that manipulates a data structure and
reasoning about what it does, which again seems to match
Knuth’s description of thinking about the dynamic state of a
process.

The powerhouse questions also match the kind of questions that
Dehnadi and Bornat claim are useful at predicting success in CS1
[4]. They say that assignment and recursion are two of the most
difficult concepts for students to master and the sample questions
they provide look very much like question 23.

6. IMPLICATIONS FOR TESTING
People often ask, “If these are such powerful questions, should we
pack our exams with these kind of questions?” The answer
depends on what you are trying to accomplish with your tests.

Most instructors include “program mystery” questions that
students find annoying because they can be so confusing. The
pattern of powerhouse correlations suggests that this is a useful
kind of question to include. But should you include many such
questions or assign them a particularly heavy weighting?

In terms of assessment, you would not want to overemphasize
powerhouse questions. The powerhouse questions have a
nontrivial correlation with each other, so including many of them
may be unnecessary. When the author ran a regression analysis to
pick a set of multiple choice questions that best predicted overall
success on the AP exam, question 23 was picked first. But once it
had been included, the other powerhouse questions weren’t
particularly strong predictors. The regression picked questions
that seemed to be measuring mastery of specific skills and
coverage of specific topics which are also important to include in
any assessment of student performance.

But the powerhouse type of question can serve a different role. If
these questions do indeed test a student’s mental model of
computation, then it is possible that they would make good
practice problems. They help students to deduce flaws in their
mental model of computation and they might serve as a kind of
mental calisthenics for programming. There is some evidence for
this in that the powerhouse questions had the greatest disparity
between A-only and AB test takers. It is possible that this ability
improves with practice, which could explain why for these
particular questions students who took the longer AB course
outperformed the students who took just an A course.

As an example, the author has designed a specific kind of question
in an attempt to test Knuth’s “snapshots of a computation.”
Students are shown a code fragment with particular points
indicated with comments, as in the following Java method:
public static int mystery(int n) {

 int x = 0;

 while (n % 2 == 0) {

 // Point A

 n = n / 2;

 x++;

 // Point B

 }

 // Point C

 return x;

}

Students are asked to identify at each point whether certain
assertions are always true, never true or sometimes true and

sometimes false. For example, the assertion (n % 2 == 0) is
always true at point A, sometimes true at point B and never true at
point C. The author’s anecdotal experience is that students often
struggle with this style of question when they first encounter it,
but they do fairly well in answering this type of question if they
are given the opportunity to practice.

7. CONCLUSIONS
This paper has demonstrated a rather startling set of correlations
that a small set of questions from the 1988 AP/CS exam have with
the rest of the exam. The high number of nontrivial correlations
with the entire exam suggest that there is something special about
these questions.

Unfortunately, the analysis leaves us with more questions than
answers. The powerhouse questions may point us in the direction
of what kind of question to ask, but do they measure a
fundamental ability that some people have more than others? If
so, can that ability be effectively tested before a student takes a
course? Can we add components to our courses like specially
designed test questions that help students to hone this ability?

The author hopes that others will undertake similar studies to
identify questions that are particularly good predictors of success
in CS1 and CS2 and to attempt to answer some of these important
questions.

REFERENCES
[1] http://www.apcentral.collegeboard.com.
[2] Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education

[3] Caspersen, M. E., Larsen, K. D., and Bennedsen, J. 2007.
Mental models and programming aptitude. Proceedings of
the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education.

[4] Dehnadi, S., and Bornat, R. 2006. The Camel Has Two
Humps. Middlesex University Working Paper,
www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

[5] D. Knuth. 2004. Selected Papers on Computer Science.
CSLI.

[6] Ma, L., Ferguson, J., Roper, M., and Wood, M. 2007.
Investigating the viability of mental models held by novice
programmers. Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education.

[7] Simon, Fincher, S., Robbins, A., Baker, B., Box, I., Cutts, Q.,
De Raadt, M., Haden, P., Hamer, J., Hamilton, M., Lister, R.,
Petre, M., Sutton, K., Tolhurst, D., and Tutty, J. 2006.
Predictors of success in a first programming course.
Proceedings of the Eighth Australasian Computing Education
Conference.

