
Modular Arithmetic and
RSA Encryption

Stuart Reges
Principal Lecturer

University of Washington

Some basic terminology
 Alice wants to send a secret message to Bob
 Eve is eavesdropping
 Cryptographers tell Alice and Bob how to

encode their messages
 Cryptanalysts help Eve to break the code
 Historic battle between the cryptographers

and the cryptanalysts that continues today

Public Key Encryption
 Proposed by Diffie, Hellman, Merkle
 First big idea: use a function that cannot be

reversed (a humpty dumpty function): Bob
tells Alice a function to apply using a public
key, and Eve can’t compute the inverse

 Second big idea: use asymmetric keys
(sender and receiver use different keys): Bob
has a private key to compute the inverse

 Primary benefit: doesn't require the sharing of
a secret key

RSA Encryption
 Named for Ron Rivest, Adi Shamir, and

Leonard Adleman
 Invented in 1977, still the premier approach
 Based on Fermat's Little Theorem:

ap-1≡1 (mod p) for prime p, gcd(a, p) = 1
 Slight variation:

a(p-1)(q-1)≡1 (mod pq) for distinct primes p
and q, gcd(a,pq) = 1

 Requires large primes (100+ digit primes)

Example of RSA
 Pick two primes p and q, compute n = p×q
 Pick two numbers e and d, such that:

e×d = (p-1)(q-1)k + 1 (for some k)
 Publish n and e (public key), encode with:

(original message)e mod n
 Keep d, p and q secret (private key), decode

with:
(encoded message)d mod n

Why does it work?
 Original message is carried to the e power,

then to the d power:
(msge)d = msge d

 Remember how we picked e and d:
msged = msg(p-1)(q-1)k + 1

 Apply some simple algebra:
msged = (msg(p-1)(q-1))k × msg1

 Applying Fermat's Little Theorem:
msged = (1)k × msg1 = msg

