Some Basic Terminology
- Alice wants to send a secret message to Bob
- Eve is eavesdropping
- Cryptographers tell Alice and Bob how to encode their messages
- Cryptanalysts help Eve to break the code
- Historic battle between the cryptographers and the cryptanalysts

Public Key Encryption
- Proposed by Diffie, Hellman, Merkle
- First big idea: use a function that cannot be reversed (a humpty dumpty function): Bob tells Alice a function to apply using a public key, and Eve can't compute the inverse
- Second big idea: use asymmetric keys (sender and receiver use different keys): Bob has a private key to compute the inverse
- Primary benefit: doesn't require the sharing of a secret key

RSA Encryption
- Named for Ron Rivest, Adi Shamir, and Leonard Adleman
- Invented in 1977, still the premier approach
- Based on Fermat's Little Theorem:
 \[a^{p-1} \equiv 1 \pmod{p} \text{ for prime } p, \gcd(a, p) = 1 \]
- Slight variation:
 \[a^{(p-1)(q-1)} \equiv 1 \pmod{pq} \text{ for distinct primes } p \text{ and } q, \gcd(a,pq) = 1 \]
- Requires large primes (100+ digit primes)

Example of RSA
- Pick two primes p and q, compute \(n = p \times q \)
- Pick two numbers e and d, such that:
 \(ed = (p-1)(q-1)k + 1 \) (for some k)
- Publish n and e (public key), encode with:
 \((\text{original message})^e \mod n\)
- Keep d, p and q secret (private key), decode with:
 \((\text{encoded message})^d \mod n\)

Why does it work?
- Original message is carried to the e power, then to the d power:
 \((\text{msg}^e)^d = \text{msg}^{ed}\)
- Remember how we picked e and d:
 \(\text{msg}^{ed} = \text{msg}^{(p-1)(q-1)k + 1}\)
- Apply some simple algebra:
 \(\text{msg}^{ed} = (\text{msg}^{(p-1)(q-1)})^k \times \text{msg}^1\)
- Applying Fermat's Little Theorem:
 \(\text{msg}^{ed} = (1)^k \times \text{msg}^1 = \text{msg}\)

Further exploration
- Longer description of this talk: http://www.cs.washington.edu/homes/reges/rsa/
- CryptoKids: http://www.nsa.gov/kids/
- Python programming: http://python.org/