CSE 599F
Research Methods and Data Analysis in Software Systems Research
Winter 2019

Course introduction

January 08, 2019
Today

- Brief introduction
- Your expectations
- Course overview
- My expectations
- Logistics
- The scientific method
- Some “classic” examples
My background
My background

My research areas
- Software testing and verification
- Software debugging
- Software security
- Empirical software engineering
- Mining software repositories
My background

My research areas
- Software testing and verification
- Software debugging and repair
- Software security
- Empirical software engineering
- Data science / Applied ML
My background

My research areas
- Software testing and verification
- Software debugging and repair
- Software security
- Data science / Applied ML
- ML for PLSE / PLSE for statistics
The Role of Software/Systems Engineering

Experimental infrastructure is software, too!

Example: Design space exploration

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.34</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>0.52</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>0.81</td>
<td>0.22</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Role of Software/Systems Engineering

Experimental infrastructure is software, too!

Example: Design space exploration

- 150 configurations, 1000+ benchmarks
- 1-85 hours per execution
- 200,000+ CPU hours (~23 CPU years)
Your background and expectations

Introduction and a very brief survey

● **Field:** What is your area of research?
● **Stage:** What stage of the (PhD) program are you at?
● **Top-2 expectations:** What do you expect from this course?
Course overview: the big picture

- **Computer science as science**
 - Reasoning about experimental designs, studies, and threats to validity.
 - Correlation, causality, and confounding.
 - Statistical vs. practical significance (effect size).
 - Simpson’s paradox and censored data.

- **The technical part and R tutorial**
 - Hypothesis testing, confidence intervals, and bootstrapping.
 - Parametric vs. non-parametric statistics.
 - Modeling and parameter estimation.
 - Data visualization and reporting.

- **Research project**
 - Related to empirical research/data analysis -- ideally in your field.
 - You can team up or work alone.
Course overview: the big picture

- **Computer science as science**
 - Reasoning about experimental designs, studies, and threats to validity.
 - Correlation, causality, and confounding.
 - Statistical vs. practical significance (effect size).
 - Simpson’s paradox and censored data.

- **The technical part and R tutorial**
 - Hypothesis testing, confidence intervals, and bootstrapping.
 - Parametric vs. non-parametric statistics.
 - Modeling and parameter estimation.
 - Data visualization and reporting.

- **Research project**
 - Related to empirical research/data analysis -- ideally in your field.
 - You can team up or work alone.
Course overview: the big picture

- **Computer science as science**
 - Reasoning about experimental designs, studies, and threats to validity.
 - Correlation, causality, and confounding.
 - Statistical vs. practical significance (effect size).
 - Simpson’s paradox and censored data.

- **The technical part and R tutorial**
 - Hypothesis testing, confidence intervals, and bootstrapping.
 - Parametric vs. non-parametric statistics.
 - Modeling and parameter estimation.
 - Data visualization and reporting.

- **Research project**
 - Related to empirical research/data analysis -- ideally in your field.
 - You can team up or work alone.
Course overview: the big picture

- **Computer science as science** 2 paper reviews + 1 presentation
 - Reasoning about experimental designs, studies, and threats to validity.
 - Correlation, causality, and confounding.
 - Statistical vs. practical significance (effect size).
 - Simpson’s paradox and censored data.

- **The technical part and R tutorial** 2 in-class exercises
 - Hypothesis testing, confidence intervals, and bootstrapping.
 - Parametric vs. non-parametric statistics.
 - Modeling and parameter estimation.
 - Data visualization and reporting.

- **Research project** Entire quarter
 - Related to empirical research/data analysis -- ideally in your field.
 - You can team up or work alone.

Questions?
Course overview: grading

- **40%** Class project
- **20%** In-class exercises (2 sessions)
- **20%** Paper reviews (2 papers)
- **10%** Paper presentation (1 paper)
- **10%** Participation

Questions?
Course overview: the even bigger picture

This course
- is experimental!
- is feedback-driven -- your input matters!
- is not a comprehensive summary of statistical methods.
- is not a replacement for various statistics courses.

Other (UW) resources
- INFO 270: Calling Bullshit: Data reasoning in a digital world
 https://callingbullshit.org
- Practical Statistics for HCI
 https://depts.washington.edu/madlab/proj/ps4hci/
- Statistical Analysis and Reporting in R
 http://depts.washington.edu/madlab/proj/Rstats/
My expectations

- Reading and reviewing research papers.
- Presenting a research paper.
- Conducting a quarter-long data analysis project.
- Working with the R programming language.
- Some programming experience.
- Have fun!
Logistics

- CSE 305, Tu/Th, 10:30am – 11:50am.
- Lectures, presentations, and lab session.
- Course material, schedule, etc. on website: https://homes.cs.washington.edu/~rjust/courses/2019Winter/CSE599
- Submission of assignments via Canvas: https://canvas.uw.edu
- Discussions Piazza https://piazza.com
First paper readings and project proposal

- **01/10**: Paper reading:
 Is computer science science?

- **01/15**: Paper reading:
 Should computer scientists experiment more?

- **01/15**: informal project proposal.
Today

- Brief introduction
- Your expectations
- Course overview
- My expectations
- Logistics
- The scientific method
- Some “classic” examples
The scientific method

Question
The scientific method

Question → Observations
The scientific method
The scientific method

Seems quite simple. What’s important?
The scientific method

Question → Observations → Hypothesis

Experiment → Predictions

Broader theory
The scientific method

- **Question**
- **Observations**
- **Hypothesis**
- **Experiment**
- **Predictions**

Falsifiable

Broader theory

Data collection and analysis!

Repeatable
The scientific method: common mistake

Question → Data collection → Observations → Hypothesis

Data Analysis → Predictions
The scientific method: common mistake

"If you torture the data long enough, it will confess."
[Ronald Harry Coase]
My favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- I trust my intuition, no need to run experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don’t understand these intervals, can you give a p value?
My favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- I trust my intuition, no need to run experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don’t understand these intervals, can you give a p value?

Avoid confirmation bias; always try to prove yourself wrong (regardless of whether the results are good or bad).
My favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- I trust my intuition, no need to run experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don’t understand these intervals, can you give a p value?

Transform intuition and expectations into testable hypotheses!
My favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- I trust my intuition, no need to run experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don’t understand these intervals, can you give a p value?

"Statistical significance is the least interesting thing about the results"
[Sullivan and Fein: Using effect size -- or why the p value is not enough]
Today

● Brief introduction
● Your expectations
● Course overview
● My expectations
● Logistics
● The scientific method
● Some “classic” examples
A classic example: correlation vs. causation

Observation:
Murder rates and ice cream sales are strongly positively correlated.

Conclusion:
Eating ice cream is really dangerous.
A classic example: correlation vs. causation

Observation:
Murder rates and ice cream sales are strongly positively correlated.

Conclusion:
Eating ice cream is really dangerous.

Possible explanations?

- Resurrected zombies primarily feed off ice cream
- Excessive ice cream consumption makes others jealous
A classic example: correlation vs. causation

Observation:
Murder rates and ice cream sales are strongly positively correlated.

Conclusion:
Eating ice cream is really dangerous.

Possible explanations?
- Resurrected zombies primarily feed off ice cream
- Excessive ice cream consumption makes others jealous

The weather is a non-controlled confound!
Another example: errors and baselines

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Goal:
Studying the relationship between time spent on studying Java and success rate in completing coding assignment.

Methodology:
● 75 participants are randomly selected in front of CSE.
● Each participant is given a high-level overview of the study.
● Each participant decides on how long to study before attempting to solve any coding assignment.
● Each participant solves as many coding assignments as possible in one hour (after studying).
Conclusion: Spending more time on learning Java makes you a worse Java programmer.
Yet another example: what’s wrong?

Hours spent on studying Java

Number of completed tasks/assignments

Goal:
- Comes up with a **testable hypothesis** about the data.
- 2 methodology questions.
Yet another example: Simpson’s paradox

This phenomenon is called: Simpson’s paradox.