Recap: Parametric vs. non-parametric statistics

Parametric statistics
- Assumptions about the underlying distribution.
 - Examples for common assumptions:
 - Normal distribution.
 - Equal variance.
 - Parametric because of the reliance on distribution parameters.
 - Example: Student’s t-test, Welch’s t-test.

Non-parametric statistics
- Fewer assumptions about the underlying distribution.
- Rank-based -> more robust to outliers.
- Example: Mann Whitney u test (Wilcoxon rank sum test).

Testing paired samples

When testing paired (dependent) samples, normality is assumed for the difference!
Today

- Logistics
- Data analysis of a real, small data set (aka hacking an R script that works :))

Logistics: Paper readings
 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6032439
2. A large scale study of programming languages and code quality in github
 https://dl.acm.org/citation.cfm?id=2635922
3. Are mutation scores correlated with real fault detection?
 A large scale empirical study on the relationship between mutants and real faults
 https://dl.acm.org/citation.cfm?id=3180183
4. Techniques for improving regression testing in continuous integration development environments (at Google)
 https://dl.acm.org/citation.cfm?id=2635910
5. Revisiting Unsupervised Learning for Defect Prediction
 https://dl.acm.org/citation.cfm?id=3106257
6. Why most published research findings are false
 https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124

Data analysis in R: the set up
Problem:
Prove program equivalence between a program P and each of many variants V_n

Approach:
- Encode programs as constraint systems and use an SMT solver
- Three strategies: naive, caching, forking
- Forking is only applicable to first-order variants

Data analysis:
- 3 subject programs (TicTacToe, Tax, Triangle).
- Between 99 and 267 variants per subject program.
- Each strategy ran 5 times on each variant.

Data analysis in R: the collected data
Skeleton R script: analysis.R
Data file: timing.csv

Variant,naive,caching,forking,equivalent,first.order,run,subject
11, 309.8,157.6, 144.8, 1, 1, 1, "tax"
12, 379.5,237.4, 254.5, 0, 1, 1, "tax"
13, 415.9,225.9, 225.9, 0, 0, 1, "tax"

Formulas in R
- Modeling dependent and independent variables
- Example: caching ~ subject + first.order

High-level research question:
- Is forking significantly better than caching/naive for all (first-order) variants?