CSE 599F
Research Methods and Data Analysis in Software Systems Research
Winter 2019

Data visualization

March 05, 2019
Recap

● Monte Carlo (MC) methods
 ○ What is the key concept?
 ○ When are these applicable and useful?

● Bootstrapping (in R)
 ○ What is the key concept?
 ○ How is bootstrapping different from and related to MC methods?
 ○ What is the core assumption for bootstrapping?
Today

- From an experimental design to a research paper
- Data visualization
 - Guidelines for effective tables and graphs
 - Effective tables with \textit{booktabs}
 - Effective graphs with \textit{ggplot2}
Empirical research: the pipeline

Experimental Design → How do we get here? → Research paper
Empirical research: the pipeline

Do all results go into the paper?
Empirical research: the pipeline

- Experimental Design
- Data collection
- Data analysis
- Graphs & tables
- Research paper
- Sanity checks
- Detailed results
Effective tables
Tables vs. graphs

● When are tables useful?
 ○ Compare individual values.
 ○ Precise values are important.
 ○ Values may involve multiple units.

<table>
<thead>
<tr>
<th>Browser</th>
<th>Market share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>June 08</td>
</tr>
<tr>
<td>Internet Explorer</td>
<td>75.4</td>
</tr>
<tr>
<td>Firefox</td>
<td>18.9</td>
</tr>
<tr>
<td>Safari</td>
<td>2.8</td>
</tr>
<tr>
<td>Chrome</td>
<td>—</td>
</tr>
<tr>
<td>Opera</td>
<td>2.1</td>
</tr>
<tr>
<td>Netscape</td>
<td>0.5</td>
</tr>
<tr>
<td>Other</td>
<td>0.2</td>
</tr>
</tbody>
</table>

● When are graphs useful?
 ○ Consider an entire set of values.
 ○ Visualize trends and patterns.
 ○ Relative differences and relationships are more important than precise values.
Effective tables: layout

A first table in LaTex:

- Recall the run-time data set
- Goal: show run times and improvements

| variant, naive, caching, forking, equivalent, first.order, run, subject |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 11, 309.8, 157.6, 144.8, 1, 1, 1, "tax" |
| 12, 379.5, 237.4, 254.5, 0, 1, 1, "tax" |
| 13, 415.9, 225.9, 225.9, 0, 0, 1, "tax" |
| ... |

...
Effective tables: layout

A first table in LaTeX:

- Recall the run-time data set
- Goal: show run times and improvements

![Table 1: Run times and improvements.](image)

```
<table>
<thead>
<tr>
<th>Subject</th>
<th>RT-naive</th>
<th>RT-cache</th>
<th>RT-fork</th>
<th>I-cache</th>
<th>I-fork</th>
</tr>
</thead>
<tbody>
<tr>
<td>tax</td>
<td>504.11</td>
<td>247.01</td>
<td>195.42</td>
<td>51.02%</td>
<td>61.31%</td>
</tr>
<tr>
<td>tictactoe</td>
<td>17.44</td>
<td>16.32</td>
<td>15.43</td>
<td>6.31%</td>
<td>11.49%</td>
</tr>
<tr>
<td>triangle</td>
<td>3.13</td>
<td>2.79</td>
<td>1.67</td>
<td>10.91%</td>
<td>46.62%</td>
</tr>
</tbody>
</table>
```

Looks pretty good and clear, doesn’t it?
Effective tables: layout

TABLE I

Run times and improvements.

<table>
<thead>
<tr>
<th>Subject</th>
<th>RT-naive</th>
<th>RT-cache</th>
<th>RT-fork</th>
<th>I-cache</th>
<th>I-fork</th>
</tr>
</thead>
<tbody>
<tr>
<td>tax</td>
<td>504.11</td>
<td>247.01</td>
<td>195.42</td>
<td>51.02%</td>
<td>61.31%</td>
</tr>
<tr>
<td>tictactoe</td>
<td>17.44</td>
<td>16.32</td>
<td>15.43</td>
<td>6.31%</td>
<td>11.49%</td>
</tr>
<tr>
<td>triangle</td>
<td>3.13</td>
<td>2.79</td>
<td>1.67</td>
<td>10.91%</td>
<td>46.62%</td>
</tr>
</tbody>
</table>

TABLE II

Run times and improvements for the naive, caching (cache), and forking (fork) strategies. Run times are given in seconds and averaged over five runs.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Run times</th>
<th>Improvements</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>naive</td>
<td>cache</td>
<td>fork</td>
<td>cache (vs. naive)</td>
<td>fork (vs. naive)</td>
</tr>
<tr>
<td>Tax</td>
<td>504</td>
<td>247</td>
<td>195</td>
<td>51.0%</td>
<td>61.3%</td>
</tr>
<tr>
<td>TicTacToe</td>
<td>17.4</td>
<td>16.3</td>
<td>15.4</td>
<td>6.31%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Triangle</td>
<td>3.13</td>
<td>2.79</td>
<td>1.67</td>
<td>10.9%</td>
<td>46.6%</td>
</tr>
</tbody>
</table>

Which table looks better?
Effective tables: content

Still room for improvements -- keep it simple:

- Avoid mixing higher-is-better and lower-is-better values.
- Allow for easy comparisons, primarily by row.
- Summarize the table (what is the bottom line?).

TABLE II

RUN TIMES AND IMPROVEMENTS FOR THE NAIVE, CACHING (CACHE), AND FORKING (FORK) STRATEGIES. RUN TIMES ARE GIVEN IN SECONDS AND AVERAGED OVER FIVE RUNS.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Run times</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>naive</td>
<td>cache</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(vs. naive)</td>
</tr>
<tr>
<td>Tax</td>
<td>504</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>51.0%</td>
<td>61.3%</td>
</tr>
<tr>
<td>TicTacToe</td>
<td>17.4</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>6.31%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Triangle</td>
<td>3.13</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>10.9%</td>
<td>46.6%</td>
</tr>
</tbody>
</table>
Effective tables: summaries

<table>
<thead>
<tr>
<th>Subject</th>
<th>LOC</th>
<th>Speed up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>8900</td>
<td>10.2%</td>
</tr>
<tr>
<td>TicTacToe</td>
<td>120</td>
<td>54.2%</td>
</tr>
<tr>
<td>Triangle</td>
<td>80</td>
<td>60.9%</td>
</tr>
<tr>
<td>Average</td>
<td>3393</td>
<td>41.8%</td>
</tr>
</tbody>
</table>

Total vs. Average

How to properly summarize a table?
Effective tables

Effective tables in LaTeX:
● Use the **booktabs** package!
● Use descriptive (hierarchical) headers.
● Make each table self-contained (content and caption).
● Don’t use horizontal lines between related rows.
● Don’t use vertical lines between related columns.
● Right align numbers.
● Summarize with meaningful totals or weighted averages.
● Think about precision vs. significant digits (be consistent)!
Effective graphs
Effective graphs: taming complexity

Way too many details!
How can this plot be simplified and improved?
Effective graphs: axes

Truncated axes are misleading and not a proper way to “demonstrate” effect size.
Effective graphs: point plots vs. line plots

Point plots (scatter plots):
- Good visual summary of point clouds, trends, and relationships.
- May obscure relevant trends (overlapping points).
- Hard to reason about density (without adding transparency).
Effective graphs: histogram vs. kernel density

Histograms:
- Good visual summary of count data.
- Binning may lead to misleading results.
- Kernel density overlay can provide information about adequate binning.

Adequate binning

Changed binning

Kernel density
Effective graphs: box plots vs. violin plots

Box plots:
- Good visual summary for continuous data.
- Nicely complements hypothesis tests.
- May be misleading for multimodal data.
Effective graphs: facet plots
Point plot of the raw data
```r
ggplot(data=result, aes(x=Step, y=Ratio, color=Strategy)) + geom_point() + xlab("Work") + ylab("Test completeness")
```

Aggregated line plot of the same data
```r
ggplot(data=result, aes(x=Step, y=Ratio, color=Strategy)) + stat_summary(fun.y="mean", geom="line") + xlab("Work") + ylab("Test completeness")
```
Effective graphs

Effective graphs in R:
- Use the **ggplot2** package!
- Make each plot self-contained (content and caption).
- Relate tables and graphs to tell a coherent story.
- Avoid multiple, unrelated axes.
- Consistently put the DV on the vertical axis (by default).
- Choose an appropriate graph for the data (don’t connect unrelated data points).
- Reduce complexity with facet plots.