
CSE 403
Software Engineering

Winter 2023

Software development life cycle

Recap: The Joel Test

1. Do you use source control?
2. Can you make a build [+ release] in one step?
3. Do you make daily builds?

Do you use CI (clean main branch)?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?

10. Do you have testers?
Do you do automated testing AND do you have testers?

11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

403 requires

*

*

*

**

This week

● Software development life cycle
○ Traditional models
○ Agile models
○ What’s the best model (for your course project)?

● Requirements
● Teams and Scrum

Software development: the high-level problem

Specification

???

Source code

One solution: “Here happens a miracle”

Software development: code and fix

Specification

???

Source code

One solution: “Here happens a miracle”

Software development: code and fix

Specification

???

Source code

Software development: ad-hoc or systematic?

Pros: Ad-hoc
● ...

Cons: Ad-hoc
● ...

Software development: ad-hoc or systematic?

Pros: Ad-hoc
● No formal process and onboarding costs.
● Easy, quick, and flexible.

Cons: Ad-hoc
● Might lack important tasks such as design or testing.
● Doesn’t scale to multiple developers.
● Difficult to measure effort and progress.

Software Development Life Cycle (SDLC)

The software development life cycle (SDLC)

SDLC: produce software through a series of stages
● From conception to end-of-life.
● Can take months or years to complete.

Goals of each stage
● Define a clear set of steps to perform.
● Produce a tangible item.
● Allow for review of work.
● Specify actions to perform in the next stage.

Life-cycle stages

Virtually all SDLC models have the following stages
● Requirements
● Design
● Implementation
● Testing
● Maintenance

Key questions:
● How to combine the stages and in what order?
● How does this differ for traditional vs. agile models?

Major SDLC models

Traditional models
● Waterfall model
● Prototyping
● Spiral model
● ...
Agile models
● XP (Extreme Programming)
● Scrum
● ...

All models have the same goals:
Manage risks and produce high quality software.

Traditional SDLC models

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Linear, non-overlapping

activities and steps.
● Each step is signed off

on and then frozen.
● Most steps result in a

final document.

Conceptually very clean, but what’s missing?

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Linear, non-overlapping

activities and steps.
● Each step is signed off

on and then frozen.
● Most steps result in a

final document.
● Backsteps to correct

mistakes.

Waterfall model

Advantages
● Easy-to-follow, sequential model.
● Reviews ensure readiness to advance.
● Works well for well-defined projects (requirements are clear).

Drawbacks
● Hard to do all the planning upfront.
● Final product may not match the client’s needs.
● Step reviews require significant effort.

Prototyping

● Bottom-up approach.
● Problem domain or requirements

not well defined or understood.
● Create small implementations of

requirements that are least understood.
● Requirements are “explored” before the

product is fully developed.
● Developers gain experience when developing

the “real” product.

Prototype Review

Refine

Prototyping

Advantages
● Client involvement and early feedback.
● Improves requirements and specifications.
● Reduces risk of developing the “wrong” product.

Drawbacks
● Time/cost for developing a prototype may be high.
● Focus may be too narrow (no thinking outside the box).

Spiral model

● Incremental/iterative model (combines the waterfall model
and prototyping).

● Iterations called spirals.
● Activity centered:

○ Planning
○ Risk analysis
○ Engineering
○ Evaluation

● Phased reduction of risks
(address high risks early).

 Boehm, Spiral Development: Experience, Principles,and
 Refinements, CMU/SEI-2000-SR-008

http://www.sei.cmu.edu/reports/00sr008.pdf
http://www.sei.cmu.edu/reports/00sr008.pdf

Spiral model

Advantages
● Early indication of unforeseen problems.
● Allows for changes.
● The risk reduces as costs increase.

Drawbacks
● Requires proper risk assessment.
● Requires a lot of planning and experienced management.

Agile SDLC models

Agile models

Agile Manifesto (http://agilemanifesto.org/):
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan.

Agile models: XP

Extreme Programming (XP)
● New versions may be built several times per day with

products delivered to customers weekly.
● All tests must be run and pass for every build (may be

combined with test-driven development).
● Adaptation and re-prioritization of requirements.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.
● Pairs and roles are

frequently changed.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.
● Pairs and roles are

frequently changed.
● Improves communication,

and feedback.

Agile models

Basics
● Maintain simplicity.
● Team members choose their own methods, tools etc.
● Continuous customer involvement.
● Expect requirements to change, focus on incremental delivery.

Agile models

Advantages
● Flexibility (changes are expected).
● Focus on quality (continuous testing).
● Focus on communication.

Drawbacks
● Requires experienced management and highly skilled

developers.
● Prioritizing requirements can be difficult when there are

multiple stakeholders.
● Best for small to medium (sub) projects.

What’s the best SDLC model?

What model would you choose and why?

● A control system for anti-lock braking in a car.

● A hospital accounting system that replaces an existing one.

● An interactive system that allows airline passengers to
quickly find replacement flights (for missed or bumped
reservations) from airport terminals or a mobile app.

What’s the best SDLC model?

Project management triangle (pick any two)

Consider
● The project and task at hand.
● Well-definedness of requirements.
● Risk management and quality/cost control.
● Customer involvement and feedback.
● Experience of management and team members.

Time Cost

Scope

Quality

Summary: SDLC models

● All models have the same goals: manage risks and
produce high quality software.

● All models involve the same activities and steps
(e.g., specification, design, implementation, and testing).

● All models have advantages and drawbacks.

● Traditional models: E.g., Waterfall, Prototyping, Spiral.

● Agile models: E.g, Extreme Programming (XP), Scrum.

