
CSE 403
Software Engineering

Winter 2023

Requirements and Use cases

Project assignments are done!

Logistics Logistics

As of next week:
● One deliverable due every Tuesday 11:59pm
● Progress report and agenda due every Wednesday 8pm

● Team meeting every Tuesday 1:30pm -- 2:20pm
● Project meeting every Thursday 1:30pm -- 2:20pm

Logistics for procrastinators :)

As of next week:
● One deliverable due every Tuesday 10pm
● Progress report and agenda due every Wednesday 6pm

● Team meeting every Tuesday 1:30pm -- 2:20pm
● Project meeting every Thursday 1:30pm -- 2:20pm

Logistics for procrastinators :)

As of next week:
● One deliverable due every Tuesday 10pm
● Progress report and agenda due every Wednesday 8pm

● Team meeting every Tuesday 1:30pm -- 2:20pm
● Project meeting every Thursday 1:30pm -- 2:20pm

Suggested workflow:
● Wednesday: everyone has read the assignment

○ General assignment questions on Slack
○ Progress report and agenda: task assignment and project-specific questions

● Thursday: resolve project-specific questions in project meeting
● …
● Tuesday: final checks (all tasks done before the meeting)

Requirements

Recap: Life-cycle stages

Virtually all SDLC models have the following stages:
● Requirements Our focus this week
● Design
● Implementation
● Testing
● Maintenance

Traditional models:
● Waterfall, Prototyping, Spiral, etc.

Agile models:
● eXtreme Programming, Scrum, etc.

Requirements in one picture Software requirements

Requirements specify what to build

● describe what, not how
● describe the problem, not the solution
● reflect system design, not software design

“What” vs. “how” is relative

One person’s what is another person’s how:

● Input file processing is the what, parsing is the how.

● Parsing is the what, a stack is the how.

● Stack is the what, a linked list is the how.

● A linked list is the what, Node* is the how.

Requirements: Goals and roles

Goals when eliciting requirements:
● Understand precisely what is required of the software.
● Communicate this understanding precisely to all involved parties.
● Control production to ensure that system meets specification.

Roles of requirements:
● Customers: what should be delivered (contractual base).
● Managers: scheduling and monitoring (progress indicator).
● Designers: a spec to design the system.
● Coders: a range of acceptable implementations.
● QA / Testers: a basis for testing, verification, and validation.

How to elicit requirements?

Do:
● Talk to the users -- to learn how they work.
● Ask questions throughout the process -- "dig" for requirements.
● Think about why users do something in your app, not just what.
● Allow (and expect) requirements to change later.

Don't:
● Be too specific or detailed.
● Describe complex business logic or rules of the system.
● Describe the exact user interface used to implement a feature.
● Try to think of everything ahead of time. (You will fail!)
● Add unnecessary features not wanted by the customers.

Requirements engineering

The process of eliciting, analyzing, documenting, and
maintaining requirements.

One way to classify requirements
● Functional requirements

○ E.g., input-output behavior

● Non-functional requirements
○ E.g., security, privacy, scalability

● Additional constraints
○ E.g., programming language, frameworks, testing infrastructure

Cockburn’s requirements template

1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

a. Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

b. Business rules (constraints)
c. Performance demands
d. Security, documentation
e. Usability
f. Portability

g. Unresolved (deferred)
6. Human factors (legal, political, organizational, training)

See Slack for a pointer to a comprehensive write up and examples.

Strategies for eliciting requirements

Common strategies
● Interviews
● Observations
● Use cases
● Feature list
● Prototyping (e.g., UI)

Challenges and common mistakes

Challenges
● Unclear scope and unclear requirements.
● Changing/evolving requirements.
● Finding the right balance (depends on customer):

○ Comprehensible vs. detailed.
○ Graphics vs. tables and explicit and precise wording.
○ Short and timely vs. complete and late.

Common Mistakes
● Implementation details instead of requirements.
● Projection of own models/ideas.
● Feature creep/bloat.

Feature creep/bloat

Feature creep:
● Gradual accumulation of features over time.
● Often has a negative overall effect on a large software project.

Why does feature creep happen? Because features are fun!
● Developers like to code them.
● Sales teams like to brag about them.
● Users (think they) want them.

Why is it bad?
● Too many options, more bugs, more delays, less testing, …
● "Boiled frog" analogy.

Can you think of any products that have had feature creep?

Use cases

What is a use case?

A use case is a written description of a user's interaction
with the software system to accomplish a goal.
● It is an example behavior of the system
● Written from an actor's point of view, not the system’s
● 3-9 clearly written steps lead to a “main success scenario”

What is a use case?

A use case is a written description of a user's interaction
with the software system to accomplish a goal.
● It is an example behavior of the system
● Written from an actor's point of view, not the system’s
● 3-9 clearly written steps lead to a “main success scenario”

Terminology
● Actor: someone (or another system) interacting with the system
● Primary actor: person who initiates the action
● Goal: desired outcome of the primary actor

Use cases capture functional requirements of a system!

Benefits of use cases

● Establish an understanding between the customer and the
developers of the requirements (success scenarios)

● Alert developers of special cases (alternatives) and error
cases (exceptions) to test (extension scenarios)

● Capture a level of functionality (list of goals)

What is an extension?

A possible branch in a use case, e.g., triggered by an error;
useful for identifying what edge cases need to be handled/tested

Do
● Think about how every step of the use case could fail
● Give a plausible response to each extension from the system
● Response should either jump to another step of the case, or end it

Don’t
● List things outside the use case ("User's power goes out")
● Make unreasonable assumptions ("DB will never fail")
● List a remedy that your system can't actually implement

4 steps for creating a use case

1. Identify actors and goals
● Actors: What users and (sub)systems interact with our system?

● Goals: What does each actor need our system to do?

1. Identify actors and goals

2. Write the main success scenario
● Main success scenario is the preferred "happy path”

○ Easiest to read and understand
○ Everything else is a complication on this

● Capture each actor's intent and responsibility, from trigger to goal
○ State what information passes between actors
○ Number each step (line)

4 steps for creating a use case 4 steps for creating a use case

1. Identify actors and goals

2. Write the main success scenario

3. List the failure extensions
● Many steps can fail (e.g., denied credit card, out of stock)

○ Note each failure condition separately, after the main success scenario

● Describe failure-handling
○ recoverable: back to main scenario (low stock + reduce quantity)
○ non-recoverable: fails (out of stock)
○ each scenario goes from trigger to completion

● Label with step number (success scenario line) and letter
○ 5a <failure condition>; 5a.1 <fail with error message>
○ 5b <failure condition>; 5b.1 <action>; 5b.2 <continue at failure step 7>

4 steps for creating a use case

1. Identify actors and goals

2. Write the main success scenario

3. List the failure extensions

4. List the variations
● Steps can have alternative behaviors

○ Label alternatives with step number (success scenario line) and symbol
■ 5’ <Alternative 1 for step 5>
■ 5’’ <Alternative 2 for step 5>

Qualities of a good use case

● Focuses on interaction
○ Starts with a request from an actor to the system
○ Ends with the production of all the answers to the request

● Focuses on essential behaviors, from actor’s point of view
○ Does not describe internal system activities
○ Does not describe the GUI in detail

● Concise, clear, and accessible to non-programmers
○ Easy to read
○ Summary fits on a page
○ Main success scenario and extensions

Use cases vs. other requirements

Which of the following requirements should be
directly represented as a use case?
● Special deals may not run longer than 6 months.
● Customers only become preferred after 1 year.
● A customer has one and only one sales contact.
● Database response time is less than 2 seconds.
● Web site uptime requirement is 99.8%.
● Number of simultaneous users will be 200 max.

Styles of use cases

● Use case diagram (often in UML)
● Textual use case

○ Formal use case (≠ formal specification)
○ Informal use case

Use case diagram

“For reasons that remain a mystery to me, many people have focused on the
stick figures and ellipses in use case writing since Jacobson's first book came
out, and neglected to notice that use cases are fundamentally a text form.”
[Writing Effective Use Cases, Alistair Cockburn, 2000]

Formal use case

Formal use case: example Use case diagram vs. textual use case

Which one would you choose and why?

Informal use case: example

Patron loses a book
The library patron reports to the librarian that she has lost a
book. The librarian prints out the library record and asks
patron to speak with the head librarian, who will arrange for
the patron to pay a fee. The system will be updated to reflect
lost book, and patron's record is updated as well. The head
librarian may authorize purchase of a replacement book.

Informal use case with added structure

Use case 1: Patron loses a book
1.

a.
i.

Although not ideal, it is almost always better than unstructured text.

 You will probably use something in this general style
or a template for formal use cases.

