
CSE 403
Software Engineering

Winter 2023

Version control and Git

Today

● Version control: why, who, how?
● Git: concepts and terminology

Why use version control?

11:51pm

Why use version control?

11:51pm 11:57pm

Why use version control?

Just kidding... this is far more realistic.

Version control
Version control records changes to a set of files over time.

This makes it easy to review or obtain a specific version (later).

Who uses version control?

Example application domains
● Software development
● Research (infrastructure and data)
● Applications (e.g., (cloud-based) word processors)

● One central repository.

● All users commit their changes
to a central repository.

● Each user has a working copy.
As soon as they commit, the
repository gets updated.

● Examples: SVN (Subversion), CVS.

Centralized version control

Distributed version control

● Multiple copies of a repository.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless pulled from another repository.

● Examples: Git, Hg (Mercurial).

Version control with Git
(aka the best thing since sliced bread)

● “I see Subversion as being the most pointless project ever started”

● " ‘what would CVS never ever do’-kind of approach”

A little quiz
Branch vs. Clone vs. Fork

Branches

● One main development branch
(main, master, trunk, etc.).

● Adding a new feature, fixing a bug,
etc.: create a new branch -- a
parallel line of development.

● Lightweight branching (branch).

● Heavyweight branching (clone).

● Forking (clone + metadata).

Branches

● One main development branch
(main, master, trunk, etc.).

● Adding a new feature, fixing a bug,
etc.: create a new branch -- a
parallel line of development.

● Lightweight branching (branch).

● Heavyweight branching (clone).

● Forking (clone + metadata).

Branch and clone are common version control commands;
forking is a concept used by GitHub etc.

Conflicts
Conflicts

● Conflicts arise when two users change the same line of a file.
● When a conflict arises, the last committer needs to resolve it.

How to avoid merge conflicts?

Merge vs. Rebase
(vs. Interactive Rebase)

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (reword)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Change commit message

Interactive Rebase (reword)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Squash commits
into a single commit

Interactive Rebase (squash)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash & merge)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Squash & merge on GitHub Interactive Rebase (squash & rebase)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Rebase: a powerful tool, but …

● Results in a sequential commit history.
● Interactive rebasing often used to squash commits.
● Changes the commit history!

Do not rebase public branches
with a force-push!

Rebase: a powerful tool, but …

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Git concepts and terminology
Motivating Example: What is this Git command?

NAME
 git-______ - ______ file contents to the index
SYNOPSIS
 git ______ [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically ______s the
current content of existing paths as a whole, but with some options it can also
be used to ______ content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Motivating Example: What is this Git command?

NAME
 git-add - Adds file contents to the index
SYNOPSIS
 git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: vocabulary

● index: staging area (located .git/index)
● content: git tracks what is in a file, not the file itself
● tree: git's representation of a file system
● working tree: tree representing the local working copy
● staged: ready to be committed
● commit: a snapshot of the working tree (a database entry)
● ref: pointer to a commit object
● branch: just a (special) ref; semantically: represents a line of dev
● HEAD: a ref pointing to the working tree

Git: concepts and terminology

