CSE 403

Software Engineering
Winter 2023

Software architecture

Recap: In-class exercise

e Git bisect time complexity is always O(log(n))
Broken /—\ Stable

®»—0—0—0

Il
T

Recap: In-class exercise

e Git bisect time complexity is always O(log(n))
Broken //’\\ Stable

®&—O0—0—0

e Gitrevert vs. git reset

Revert

O

O o—O0—-6 -8

- **Summary of our project** - **Summary**
+ **Summary** + **Summary of our project**

Apply inverted diff

Recap: In-class exercise

e Git bisect time complexity is always O(log(n))

Broken /\ Stable

&>—0—0—0

e Gitrevert vs. git reset

Revert

o—8-0-10 O—0O——~0

e git rev-list v1.0.0..HEAD (or HEAD ~v1.0.0)

O—O0—{0—0—0|

v1.0.0 HEAD

Reset

Today

e Software architecture vs. software design

e Common software architecture patterns

Software architecture vs. software design

Why software architecture and design?

[N

“There are two ways of constructing a software
design:

one way is to make it so simple that there are
obviously no deficiencies;

the other is to make it so complicated that there

Ce no obvious deficiencies.” [Tony Hoare] /

Goals: separation of concerns and modularity.

Architecture vs. design

Requirements 4~

Architecture

Development Level of
process abstraction

Design

~” Source code ||

Abstraction

Building an abstract representation of reality
e Ignoring (insignificant) details.

e Focusing on the most important properties.

e Level of abstraction depends on viewpoint and purpose:
o Communication
o Component interfaces
o Verification and validation

Different levels of abstraction

Example: Linux Kernel

16 million Lines of Code!

e What does the code do?

e Are there dependencies?

e Are there different components?

Different levels of abstraction
Call graph
Source code = =

FESTEE (R IR e A ERovs SRl RS e ieee

Example: Linux Kernel

e 16 million Lines of Code!

e What does the code do?

e Are there dependencies?

e Are there different components?

Different levels of abstraction

Example: Linux Kernel

16 million Lines of Code!

e What does the code do?

e Are there dependencies?

e Are there different components?

Call graph

Layer diagram
User application T[jC]

[(GNU C library (glibc)

(=

System call interface

)
]
Kernel }
)
)

Device drivers

Hardware

YT Y

Architecture vs. design f
S

Requirements «

Architecture

Development
process

Level of
abstraction

Design

~” Source code |]

What's the difference?

Architecture vs. design

Architecture (what is developed?)

e High-level view of the overall system:
o What components do exist?
o What are the protocols between components?
o What type of storage etc.?

Design (how are the components developed?)
e Considers individual components:
o Data representation

o Interfaces, Class hierarchy
O

Architecture vs. design

Architecture

[Gates Center Architecture, LMN]

[Office design, New York Times]

A first example ﬂ

B,CSE403,Joe
B,CSES503,Joe
A,CSE403,Jane
A,CSE403,Lin

77?777

Goal: group and count CSE403 letter grades.

Pipe and filter

2A
grep CSE403 grades.csv | cut -f1 -d ;" | sort | uniq -c :>

B,CSE403,Joe
B,CSE503,Joe =)
A,CSE403,Jane
A,CSE403,Lin

B,CSE403,Joe B,CSE403,Joe B A 2A
B,CSES503,Joe A,CSE403,Jane A A 1B
A,CSE403,Jane A,CSE403,Lin A B

A,CSE403,Lin

Pipe and filter

2A
grep CSE403 grades.csv | cut -f1 -d ;" | sort | uniq -c :>

B,CSE403,Joe
B,CSE503,Joe =
A,CSE403,Jane
A,CSE403,Lin

B,CSE403,Joe B,CSE403,Joe B A 2A
B,CSES503,Joe A,CSE403,Jane A A 1B
A,CSE403,Jane A,CSE403,Lin A B

A,CSE403,Lin

Pipe and filter is an architecture (not a design) pattern, why?

Software architecture: Pipe and Filter

B,CSE403,Joe

2A
B,CSE503,Joe | —| grep CSE403 grades.csv | cut-f1-d ;' | sort | uniq -c :)
A,CSE403,Jane

A,CSE403,Lin

The pipe-and-filter architecture doesn’t specify the design or
implementation details of the individual components (filters)!

Software architecture: Client-server / n-tier

1

Presentation layer
A
y

Business logic layer
\

y
-
Data access layer W

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controller (MVC)

sees uses
/
View Controller

upd:R Apulates
Model

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controller: example

Simple weather station
Current 30 day history

25° F /\/“’

T
o max: 5° C

4°C min: -7° C

Model View Controller: example

01/01,8am,0
01/01,4pm,5
01/02,8am,-7
01/02,4am,-7
01/03,8am,-4

Simple weather station
Current 30 day history

25° F /\/\' /,'/
T

o max: 5° C
4°C min: -7° C /\/\f'}gp. sensor

Model View Controller: example

01/01,8am,0
01/01,4pm,5
01/02,8am,-7
01/02,4am,-7

Simple weather station
Current 30 day history

_.-" | 01/03,8am -4
25°F ~—|.-"
4°C max: 5° C
min: -7° C Temp. sensor

Reset history
button

Model View Controller: example

Simple weather station

Current 30 day history

250 F /—\/\/ ”,”’
T

max: 5° C
min: -7° C

Reset history
button

4°C

View

Model

01/01,8am,0
01/01,4pm,5
01/02,8am,-7
01/02,4am,-7
01/03,8am,-4

/_\/\J%p. sensor

Software architecture: Model View Controller (MVC)

sees uses
y4
View Controller

upd&

Model

Apulates

Separates data representation (Model),

Coiiala] visualization (View), and client interaction (Controller)
MVC: another example MVC vs. MVP vs. MVVM
[] [] Simple stats
10 Add number Reset
Numbers: 6 Median: 2.0 Mean: 3.0

30 day history\

1,2,2,2,1,10, 50 C
min: -7° C /

https://bitbucket.org/rjust/basic-stats

MVC vs. MVP vs. MVVM

A MVP

L Ao rosoner |

MVC vs. MVP vs. MVVM

A *
1 ViewModel

MVP

Presenter

Software architecture vs. design: summary

! sees

| Presentation layer ‘

¢ Controller
| Business logic layer ‘
- updates manipulates
Data access layer J<—>-Eg
/I

Architecture and design
e Components and interfaces: understand, communicate, reuse

e Manage complexity: modularity and separation of concerns
e Process: allow effort estimation and progress monitoring

