CSE 403

Software Engineering
Winter 2023

Software architecture

Recap: In-class exercise

o Git bisect time complexity is always O(log(n))
Broken l.,/’f/ﬁ“\\\,u Stable

O—CO—~0O—&—0O0O-0

Recap: In-class exercise

o Git bisect time complexity is always O(log(n))
Broken /_\ Stable

O—COCO—10&-0-0CO-O0

L i
| |

e Git revert vs. git reset

Revert Reset

- **Summary of our project** - **Summary**
+ **Summary** + **Summary of our project**

Apply invertedy

Recap: In-class exercise

o Git bisect time complexity is always O(log(n))
Broken | ///ﬁ \\ Stable

O—COCO—10C&®&O0O0-O0

e Git revert vs. git reset

Revert Reset

O O—O O—0O—=~0

e git rev-list v1.0.0..HEAD (or HEAD ~v1.0.0)

O—0O—{0—0—0|

v1.0.0 HEAD

Today

e Software architecture vs. software design

e Common software architecture patterns

Software architecture vs. software design

Why software architecture and design?

“There are two ways of constructing a software
design:

one way is to make it so simple that there are
obviously no deficiencies;

the other is to make it so complicated that there

\je no obvious deficiencies.” [Tony Hoare] /

Goals: separation of concerns and modularity.

Architecture vs. design

Requirements 4

Architecture

Development Level of
process abstraction

Design

N Source code

Abstraction

Building an abstract representation of reality
e Ignoring (insignificant) details.

e Focusing on the most important properties.

e Level of abstraction depends on viewpoint and purpose:

o Communication
o Component interfaces
o Verification and validation

Different levels of abstraction

Source code

%m%%mmmmwm

%@m%m% el oo

o] R o, e 2 mmgﬁm

Example: Linux Kernel

e 16 million Lines of Code!

e \What does the code do?

e Are there dependencies?

e Are there different components?

Different levels of abstraction
Call graph

GGy

MMMMMMMMMMMMMMMMMMM

P B e mm
ERERY Pt Dyt % s R e B T
f) TR Pl g

e R
s £ S oS

Example: Linux Kernel

e 16 million Lines of Code!

e \What does the code do?

e Are there dependencies?

e Are there different components?

Different levels of abstraction

eeeeeeeeeeeeeeeeeee

Example: Linux Kernel

16 million Lines of Code!
What does the code do?
Are there dependencies?
Are there different components?

Call graph

GGy

EaMNE -

S
é)

Layer diagram

)

L.

User application J[JlL j

[GNU C library (glibc)

System call interface

~

Kernel

~

Device drivers

r— p— | p— | g—

Hardware

Architecture vs. design

Requirements 4

Architecture

Process abstraction

Design

Development Q Level of

N Source code

What's the difference?

Architecture vs. design

Architecture (what is developed?)

e High-level view of the overall system:
o What components do exist?
o What are the protocols between components?
o What type of storage etc.?

Design (how are the components developed?)

e Considers individual components:
o Data representation
o Interfaces, Class hierarchy

©)

Architecture vs. design

Architecture

\\\// o g N ¥ o
e oSS oo

[Gates Center Architecture, LMN]

[Office design, New York Times]

A first example

B,CSE403,Joe oA
B,CSE503,Joe —) ? ? ? 1B
A,CSE403,Jane =tk

A,CSE403,Lin

_

Goal: group and count CSE403 letter grades.

Pipe and filter

B,CSE403,Joe 2A
B,CSE503,Joe —— > grep CSE403 grades.csv | cut -f1 -d *,’ | sort | uniq -c 1B
A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe : B,CSE403,Joe : B : A : 2A
B,CSE503,Joe A,CSE403,Jane A A 1B
A B

A,CSE403,Jane A,CSE403,Lin
A,CSE403,Lin

Pipe and filter

B,CSE403,Joe 2A
B,CSE503,Joe — grep CSE403 grades.csv | cut -f1 -d *;’ | sort | uniq -c 1B
A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe : B,CSE403,Joe : B : A : 2A
B,CSE503,Joe A,CSE403,Jane A A 1B
A,CSE403,Jane A,CSE403,Lin A B

A,CSE403,Lin

Pipe and filter is an architecture (not a design) pattern, why?

Software architecture: Pipe and Filter

B,CSE403,Joe 2A
B,CSE503,Joe — grep CSE403 grades.csv | cut -f1 -d *;’ | sort | uniq -c 1B
A,CSE403,Jane

A,CSE403,Lin

The pipe-and-filter architecture doesn’t specify the design or
iImplementation details of the individual components (filters)!

Software architecture: Client-server / n-tier

Presentation layer

!

Business logic layer

)
Data access layer

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controller (MVC)

sees uses
/
View Controller

upd:R //anipulates
Model

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controller: example

Simple weather station
Current 30 day history

25° F /\/\/
TN
_4° max: 5° C
¢ min: -7° C

Model View Controller: example

Simple weather station 01/01,8am,0
01/01,4pm,5

Cument _ 30 doy istory

.-~ | 01/03,8am.-4

250 F /\/\/ ”’,f' \/
TN

o max: 5° C
4G min: -7° C /_/U'Egp. sensor

Model View Controller: example

Simple weather station

01/01,8am,0
01/01,4pm,5
01/02,8am,-7
01/02,4am,-7
01/03,8am,-4

Current 30 day history
25° F /\/\/
TN

4° C max: 5° C
min: -7° C

C Reset)

Reset history
button

Temp. sensor

Model View Controller: example

Simple weather station

Model

01/01,8am,0
01/01,4pm,5
01/02,8am,-7
01/02,4am,-7
01/03,8am,-4

/_/U'Egp. sensor

Current 30 day history
250 F /\/\/
4° C max: 5° C
min: -7° C
View (Reset)
Reset history
button

Controller

Software architecture: Model View Controller (MVC)

sees uses
/
View Controller

upd:R //anipulates
Model

Separates data representation (Model),
visualization (View), and client interaction (Controller)

MVC: another example

O @] Simple stats
10 Add number Reset
Numbers: 6 Median: 2.0 Mean: 3.0
1222110,

https://bitbucket.org/rjust/basic-stats

https://bitbucket.org/rjust/basic-stats

MVC vs. MVP vs. MVVM

MVC

4

Controller

Model

\ 25° F /\/\/
TN
° max: 5° C
K 4°C min; -7° C/

MVC vs. MVP vs. MVVM

Presenter

MVC vs. MVP vs. MVVM

Presenter

ViewModel

Software architecture vs. design: summary

7

Presentation layer
¢ View Controller
Business logic layer \ /
¢ S updates manipulates
Data access layer <—>. Model
e C

/

Architecture and design
e Components and interfaces: understand, communicate, reuse

e Manage complexity: modularity and separation of concerns
e Process: allow effort estimation and progress monitoring

