
CSE 403
Software Engineering

Winter 2023

Software design and best practices

Recap: software architecture vs. design

Architecture and design
● Components and interfaces: understand, communicate, reuse
● Manage complexity: modularity and separation of concerns
● Process: allow effort estimation and progress monitoring

View Controller

Model

Client uses

manipulatesupdates

sees
Presentation layer

Business logic layer

Data access layer DB

Client

Today

● Software design and best practices
● A little quiz on best practices

● Additional material, not covered in class (refresher for 331)
○ UML crash course
○ OO design principles
○ OO design patterns

SW Design: Purposes, Concepts, and Misfits

Concept and motivating purpose

“A concept is something you need
to understand in order to use an
application (and also something a
developer needs to understand to
work effectively with its code) and
is invented to solve a particular
problem, which is called the motivating purpose.”

Use cases are a good starting point
for defining concepts for motivating purposes.

Operational principle and misfit

“A concept is defined by an operational
principle, which is a scenario that illustrates
how the concept fulfills its motivating purpose.”

Operational principle and misfit

“A concept is defined by an operational
principle, which is a scenario that illustrates
how the concept fulfills its motivating purpose.”

“A concept may not be entirely fit for purpose.
In that case, one or more operational misfits
are used to explain why. The operational misfit
usually does not contradict the operational
principle, but presents a different scenario in
which the prescribed behavior does not meet a desired goal.”

Git: another example for concepts and purposes

Properties of a good software design

Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design

Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design

Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design

Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Quiz: setup and goals
● Project groups or small teams
● 6 code snippets
● 2 rounds

○ First round
■ For each code snippet, decide whether it represents good or bad practice.
■ Goal: discuss and reach consensus on good or bad practice.

○ Second round (known “solutions”)
■ For each code snippet, try to understand why it is good or bad practice.
■ Goal: come up with an explanation or a counter argument.

Round 1: good or bad?

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Snippet 2: good or bad?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

Snippet 5: good or bad?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Snippet 6: good or bad?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Quiz: setup and goals
● Project groups or small teams
● 6 code snippets
● 2 rounds

○ First round
■ For each code snippet, decide whether it represents good or bad practice.
■ Goal: discuss and reach consensus on good or bad practice.

○ Second round (known “solutions”)
■ For each code snippet, try to understand why it is good or bad practice.
■ Goal: come up with an explanation or a counter argument.

https://pollev.com/renejust859

https://pollev.com/renejust859

Round 2: why is it good or bad?

My take on this

● Snippet 1: bad

● Snippet 2: bad

● Snippet 3: good

● Snippet 4: bad

● Snippet 5: bad

● Snippet 6: good

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Null references...the billion dollar mistake.

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

File[] files = getAllLogs();
for (File f : files) {

…
} Don’t return null; return an empty array instead.

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

No diagnostic information.

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

Defensive programming: add an assertion (or write the literal first).
Use constants and enums to avoid literal duplication.

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Type safety using an enum; throws an exception for
unexpected cases (e.g., future extensions of PaymentType).

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

Method parameters should be final;
use local variables to sanitize inputs.

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

What does the last call return (l.remove(index))?

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Avoid method overloading, which is statically resolved.
Autoboxing/unboxing adds additional confusion.

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Snippet 6: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Snippet 6: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Good encapsulation; immutable object.

Additional material, not discussed in class

UML crash course

UML crash course

The main questions
● What is UML?
● Is it useful, why bother?
● When to (not) use UML?

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

Are UML diagrams useful?

Are UML diagrams useful?

Communication
● Forward design (before coding)

○ Brainstorm ideas (on whiteboard or paper).
○ Draft and iterate over software design.

Documentation
● Backward design (after coding)

○ Obtain diagram from source code.

In this class, we will use UML class diagrams mainly for
visualization and discussion purposes.

Classes vs. objects

Class
● Grouping of similar objects.

○ Student
○ Car

● Abstraction of common properties and behavior.
○ Student: Name and Student ID
○ Car: Make and Model

Object
● Entity from the real world.
● Instance of a class

○ Student: Joe (4711), Jane (4712), …
○ Car: Audi A6, Honda Civic, ...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

MyClass
- attr1 : type

+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

UML class diagram: basic notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

Visibility
- private
~ package-private
protected
+ public

UML class diagram: basic notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

Static attributes or methods are underlined

Visibility
- private
~ package-private
protected
+ public

UML class diagram: concrete example

public class Student
extends Person {

 private int id;

 public Student(String name,
 int id) {

 ...
 }

 public int getId() {
 return this.id;
 }
}

Student

- id : int

+ Student(name:String, id:int)
+ getId() : int

Personpublic class Person {
 ...

}

Classes, abstract classes, and interfaces

<<interface>>

MyInterface

MyAbstractClass

{abstract}

MyClass

Classes, abstract classes, and interfaces

MyClass

public class MyClass {

 public void op() {
 ...
 }

 public int op2() {
 ...
 }
}

<<interface>>

MyInterface

MyAbstractClass

{abstract}

public abstract class
MyAbstractClass {

 public abstract void op();

 public int op2() {
 ...
 }
}

public interface
MyInterface {

 public void op();

 public int op2();
}

Level of detail in a given class or interface may vary and
depends on context and purpose.

UML class diagram: Inheritance

SubClass

<<interface>>

AnInterface
SuperClass

public class SubClass extends SuperClass implements AnInterface

is-a relationship

UML class diagram: Aggregation and Composition

Part

Whole

Part

Whole

Aggregation Composition

has-a relationship has-a relationship

● Existence of Part does not depend
on the existence of Whole.

● Lifetime of Part does not depend
on Whole.

● No single instance of whole is the
unique owner of Part (might be shared
with other instances of Whole).

● Part cannot exist without Whole.
● Lifetime of Part depends on Whole.
● One instance of Whole is the single

owner of Part.

Aggregation or Composition?

Room

Building

Customer

Bank
? ? ? ?

Aggregation or Composition?

Room

Building

Customer

Bank

Composition Aggregation

What about class and students or body and body parts?

UML class diagram: multiplicity

A B
1 1

Each A is associated with exactly one B
Each B is associated with exactly one A

A B
1..2 *

Each A is associated with any number of Bs
 Each B is associated with exactly one or two As

UML class diagram: navigability

A B
Navigability: not specified

A B
Navigability: unidirectional

“can reach B from A”

A B
Navigability: bidirectional

UML class diagram: example

Summary: UML

● Unified notation for modeling OO systems.

● Allows different levels of abstraction.

● Suitable for design discussions and documentation.

OO design principles

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Information hiding

MyClass
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

Information hiding

MyClass
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

What does MyClass do?

Information hiding

Stack
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Anything that could be improved in this implementation?

public class Stack {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

Information hiding

Stack
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Stack

+ push(e:int):void
+ pop():int
...

Information hiding:
● Reveal as little information

about internals as possible.
● Segregate public interface

and implementation details.
● Reduces complexity.

- elems : int[]
...

Information hiding vs. visibility

Public

???

Private

Information hiding vs. visibility

Public

???

Private

● Protected, package-private,
or friend-accessible (C++).

● Not part of the public API.
● Implementation detail that a

subclass/friend may rely on.

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

A little refresher: what is Polymorphism?

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism
● Ad-hoc polymorphism (e.g., operator overloading)

○ a + b ⇒ String vs. int, double, etc.

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden in subclasses

obj.toString(); and therefore provide a different behavior.

● Parametric polymorphism (e.g., Java generics)
○ class LinkedList<E> { ⇒ A LinkedList can store elements

 void add(E) {...} regardless of their type but still
 E get(int index) {...} provide full type safety.

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden in subclasses

obj.toString(); and therefore provide a different behavior.

Subtype polymorphism is essential to many OO design principles.

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
 if (o instanceof Square) {
 drawSquare((Square) o)
 } else if (o instanceof Circle) {
 drawCircle((Circle) o);
 } else {
 ...
 }
}

Good or bad design?

Square

+ drawSquare()

Circle

+ drawCircle()

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
 if (o instanceof Square) {
 drawSquare((Square) o)
 } else if (o instanceof Circle) {
 drawCircle((Circle) o);
 } else {
 ...
 }
}

Violates the open/closed
principle!

Square

+ drawSquare()

Circle

+ drawCircle()

Open/closed principle

Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object s) {
 if (s instanceof Shape) {
 s.draw();
 } else {
 …
 }
}

Square Circle

<<interface>>

Shape
+ draw()

...
public static void draw(Shape s) {
 s.draw();
}

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Inheritance: (abstract) classes and interfaces

LinkedList

SequentialList

{abstract}

Inheritance: (abstract) classes and interfaces

LinkedList

SequentialList

{abstract}

extends

LinkedList extends SequentialList

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>

List
SequentialList

{abstract}

extends

<<interface>>

Deque

LinkedList extends SequentialList

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>

List
SequentialList

{abstract}

extends
implements

<<interface>>

Deque

implements

LinkedList extends SequentialList implements List, Deque

Inheritance: (abstract) classes and interfaces

<<interface>>

List

<<interface>>

Collection
<<interface>>

Iterable

Inheritance: (abstract) classes and interfaces

<<interface>>

List

<<interface>>

Collection
extends

<<interface>>

Iterable

List extends Iterable, Collection

Inheritance: (abstract) classes and interfaces

LinkedList

<<interface>>

List
SequentialList

{abstract}
<<interface>>

Deque

<<interface>>

Collection

extends

extends extends

implements implements

<<interface>>

Iterable

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

B
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

Which getNum() method
should be called?

The “diamond of death”: concrete example

Animal
+ canFly():bool

Pegasus

Horse
+ canFly():bool

Bird
+ canFly():bool

Can this happen in Java? Yes, with default methods in Java 8.

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Design principles: Liskov substitution principle

Motivating example
We know that a square is a special kind of a rectangle. So,
which of the following OO designs makes sense?

Rectangle

Square

Square

Rectangle

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Is the subtype requirement fulfilled?

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);
 new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Violates the Liskov substitution principle!

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);
 new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Rectangle Square

<<interface>>

Shape

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

Inheritance vs. (Aggregation vs. Composition)

Person

Student

public class Student
 extends Person{

 public Student(){
 }

 ...
}

public class Bank {
 Customer c;

 public Bank(Customer c){
 this.c = c;
 }
 ...
}

Customer

Bank

is-a relationship has-a relationship

Room

Building

public class Building {
 Room r;

 public Building(){
 this.r = new Room();
 }
 ...
}

Design choice: inheritance or composition?

LinkedList

Stack

Hmm, both designs seem valid -- what are pros and cons?

LinkedList

public class Stack<E> implements List<E> {
 private List<E> l = new LinkedList<>();
 ...
}

public class Stack<E>
extends LinkedList<E> {

 ...
}

Stack

List
<<interface>>

List
<<interface>>

Design choice: inheritance or composition?

Pros
● No delegation methods required.
● Reuse of common state and behavior.

Cons
● Exposure of all inherited methods

(a client might rely on this particular
superclass -> can’t change it later).

● Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

Pros
● Highly flexible and configurable:

no additional subclasses required for
different compositions.

Cons
● All interface methods need to be

implemented -> delegation methods
required, even for code reuse.

LinkedList

Stack

LinkedList

Stack

List
<<interface>>

List
<<interface>>

OO design principles: summary

● Information hiding (and encapsulation)
● Open/closed principle
● Liskov substitution principle
● Composition/aggregation over inheritance

OO design patterns

A first design problem

Weather station revisited

25° F

-3.9° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

What’s a good design for the view component?

09/01,12°
09/02,14°
...

Client
sees uses

manipulatesupdates

25° F

-3.9° C min: 20° F
max: 35° F

Temp.
sensorReset

Reset history
button

Weather station: view

ComplexView

<<interface>>

View
+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

How do we need to
implement

draw(d:Data)?

Weather station: view

ComplexView

<<interface>>

View
+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

public void draw(Data d) {
 for (View v : views) {
 v.draw(d);
 }
}

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

The general solution: Composite pattern

Composite

<<interface>>

Component
+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

The general solution: Composite pattern

Composite

<<interface>>

Component
+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Iterate over all composed
components (comps), call
operation() on each, and
potentially aggregate the
results.

What is a design pattern?

● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

What is a design pattern?

● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

Pros
● Improves communication and documentation.
● “Toolbox” for novice developers.

Cons
● Risk of over-engineering.
● Potential impact on system performance.

More than just a name for common sense and best practices.

Design patterns: categories

1. Structural
● Composite
● Decorator
● ...

2. Behavioral
● Template method
● Visitor
● ...

3. Creational
● Singleton
● Factory (method)
● ...

Design patterns: categories

1. Structural
● Composite
● Decorator
● ...

2. Behavioral
● Template method
● Visitor
● ...

3. Creational
● Singleton
● Factory (method)
● ...

Another design problem: I/O streams

<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream Problem: filesystem I/O is expensive

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

Problem: filesystem I/O is expensive
Solution: use a buffer!

Why not simply implement the
buffering in the client or subclass?

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

Another design problem: I/O streams

<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

BufferedInputStream
-buffer:byte[]

+BufferedInputStream(is:InputStream)
+read():int
+read(buf:byte[]):int

...
InputStream is =

new BufferedInputStream(
new FileInputStream(...));

int b;
while((b=is.read()) != -1) {
 // do something
}
...

1

Still returns one byte (int) at a time, but from its
buffer, which is filled by calling read(buf:byte[]).

The general solution: Decorator pattern

<<interface>>

Component
+operation()

CompA CompB
+operation() +operation()

1

Decorator
-decorated:Component

+Decorator(d:Component)
+operation()

Composite vs. Decorator

<<interface>>

Component
+operation()

CompA
+operation()

1

Composite
-comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Decorator
-decorated:Component

+Decorator(d:Component)
+operation()

