
CSE 403
Software Engineering

Winter 2023

Mutation-based Testing

Recap: structural code coverage

● Code coverage is easy to compute.
● Code coverage has an intuitive interpretation.
● Code coverage in industry: Code coverage at Google
● Code coverage itself is not sufficient!

Mutation-based testing: the basics
Mutation
testing

Mutation testing

Program

Mutation testing: mutant generation

Program

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Mutation
testing

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation Mutant

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

Mutants

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program

Mutation operators

Tests

Mutation testing: test creation

MutantsProgram

Assumptions
● Mutants are coupled to real faults
● Mutant detection is correlated with real-fault detection

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf,
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf

Mutation testing: a concrete example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 1:
public int min(int a, int b) {

 return a;

}

Mutation testing: another example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 2:
public int min(int a, int b) {

 return b;

}

Mutation testing: yet another example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 3:
public int min(int a, int b) {

 return a >= b ? a : b;

}

Mutation testing: last example (I promise)

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 4:
public int min(int a, int b) {

 return a <= b ? a : b;

}

Mutation testing: exercise

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

For each mutant, provide a test case that detects it
(i.e., passes on the original program but fails on the mutant)

Mutation Testing vs. Mutation Analysis

MUTANTSPROGRAM TESTS

Mutation
Testing

Mutation Testing vs. Mutation Analysis

Mutation
Testing

Primary output is
new tests.

MUTANTSPROGRAM TESTS

Mutation Testing vs. Mutation Analysis

Mutation
Testing

Primary output is
new tests.

MUTANTSTESTS

Mutation
Analysis

Primary output is
adequacy score for
existing tests.

80%
ADEQUACY

SCORE

MUTANTSPROGRAM TESTS

PROGRAM

Mutation Testing vs. Mutation Analysis

Mutation
Testing

Primary output is
new tests.

MUTANTSTESTS

Mutation
Analysis

Primary output is
adequacy score for
existing tests.

80%
ADEQUACY

SCORE

MUTANTSPROGRAM TESTS

PROGRAM

How expensive is mutation testing?
Is the mutation score meaningful?

Mutation-based testing: productive mutants

Detectable vs. productive mutants

Historically
● Detectable mutants are good tests
● Equivalent mutants are bad no tests

A more nuanced view
● Detectable vs. equivalent is too simplistic
● Productive mutants elicit effective tests, but

○ detectable mutants can be useless, and
○ equivalent mutants can be useful!

An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions (Reading)

The core question here concerns test-goal utility
(applies to any adequacy criterion).

Detectable vs. productive mutants

Historically
● Detectable mutants are good tests
● Equivalent mutants are bad no tests

A more nuanced view
● Detectable vs. equivalent is too simplistic
● Productive mutants elicit effective tests, but

○ detectable mutants can be useless, and
○ equivalent mutants can be useful!

An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions (Reading)

The notion of productive mutants is fuzzy!
A mutant is productive if it is
1. detectable and elicits an effective test or
2. equivalent and advances code quality or knowledge

Productive mutants: mutation testing at Google

Practical Mutation Testing at Scale: A view from Google (Reading) Practical Mutation Testing at Scale: A view from Google (Reading)

Productive mutants: mutation testing at Google

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

Is the mutant is detectable?

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

The mutant is detectable, but is it productive?

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

The mutant is detectable, but is it productive? Yes!

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Is the mutant detectable?

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

The mutant is not detectable, but is it unproductive?

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

The mutant is not detectable, but is it unproductive? No!

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

Is the mutant detectable?

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

The mutant is detectable, but is it productive?

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

The mutant is detectable, but is it productive? No!

Mutation-based testing: mutant subsumption

Mutant subsumption

Mutant not detected

Mutant detected
(assertion)

Mutant detected
(exception)

Prioritizing Mutants to Guide Mutation Testing (Reading)

DMSG: Dynamic Mutant Subsumption Graph

DMSG

Prioritizing Mutants to Guide Mutation Testing (Reading)

Coverage-based vs. mutation-based testing

See dedicated Slides (4 pages).

