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Mutation-based Testing

Recap: structural code coverage

● Code coverage is easy to compute.
● Code coverage has an intuitive interpretation.
● Code coverage in industry: Code coverage at Google
● Code coverage itself is not sufficient!
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Mutation testing: mutant generation
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Mutation testing: test creation

MutantsProgram

Assumptions
● Mutants are coupled to real faults
● Mutant detection is correlated with real-fault detection

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf,
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf

Mutation testing: a concrete example

Original program: 
public int min(int a, int b) {

    return a < b ? a : b;

}

Mutant 1:
public int min(int a, int b) {

    return a;

}

Mutation testing: another example

Original program: 
public int min(int a, int b) {

    return a < b ? a : b;

}

Mutant 2:
public int min(int a, int b) {

    return b;

}



Mutation testing: yet another example

Original program: 
public int min(int a, int b) {

    return a < b ? a : b;

}

Mutant 3:
public int min(int a, int b) {

    return a >= b ? a : b;

}

Mutation testing: last example (I promise)

Original program: 
public int min(int a, int b) {

    return a < b ? a : b;

}

Mutant 4:
public int min(int a, int b) {

    return a <= b ? a : b;

}

Mutation testing: exercise

Original program: 
public int min(int a, int b) {

    return a < b ? a : b;

}

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

For each mutant, provide a test case that detects it
(i.e., passes on the original program but fails on the mutant)
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How expensive is mutation testing?
Is the mutation score meaningful?

Mutation-based testing: productive mutants



Detectable vs. productive mutants

Historically
● Detectable mutants are good               tests
● Equivalent mutants are bad            no tests

A more nuanced view
● Detectable vs. equivalent is too simplistic
● Productive mutants elicit effective tests, but

○ detectable mutants can be useless, and
○ equivalent mutants can be useful!

An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions (Reading)

The core question here concerns test-goal utility
(applies to any adequacy criterion).
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The notion of productive mutants is fuzzy!
A mutant is productive if it is
1. detectable and elicits an effective test or
2. equivalent and advances code quality or knowledge

Productive mutants: mutation testing at Google

Practical Mutation Testing at Scale: A view from Google (Reading) Practical Mutation Testing at Scale: A view from Google (Reading)

Productive mutants: mutation testing at Google



Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
  double sum = 0;
  int len = nums.length;

  for (int i = 0; i < len; ++i) {
      sum = sum + nums[i];
  }

  return sum / len;
} 

Mutant
public double getAvg(double[] nums) {
  double sum = 0;
  int len = nums.length;

  for (int i = 0; i < len; ++i) {
      sum = sum * nums[i];
  }

  return sum / len;
} 

Is the mutant is detectable?
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The mutant is detectable, but is it productive? Yes!

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
  int len = nums.length;
  double sum = 0;
  double avg = 0;
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The mutant is not detectable, but is it unproductive? No!

Detectable vs. productive mutants (3)
Original program
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Detectable vs. productive mutants (3)
Original program
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The mutant is detectable, but is it productive? No!

Mutation-based testing: mutant subsumption
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DMSG: Dynamic Mutant Subsumption Graph
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Coverage-based vs. mutation-based testing

See dedicated Slides (4 pages).


