
CSE 403
Software Engineering

Winter 2023

Program analysis

● Reasoning about programs (Today)
● Statistical fault localization (Wednesday)
● In-class exercise (Friday)

This week: Program analysis

Recap: Delta Debugging

Recap: Delta Debugging

Subsets



Recap: Delta Debugging

Granularity

Recap: Delta Debugging

Complements

Recap: Delta Debugging

Reduce

Recap: Delta Debugging



Delta debugging: discussion

● Applicability: Is this useful (as a concept and/or automated tool)?

● Optimality: minimal vs. minimum test case.

● Complexity: Best-case vs. worst-case.

● Assumptions: monotonicity and determinism.

  https://www.st.cs.uni-saarland.de/dd/

Reasoning about programs

Reasoning about programs
Use cases
● Verification/testing: ensure code is correct
● Prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ input array a is sorted

● Debugging: understand why code is incorrect

Reasoning about programs
Use cases
● Verification/testing: ensure code is correct
● Prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ input array a is sorted

● Debugging: understand why code is incorrect

Approaches
● Testing (403)
● (Delta) Debugging (403)
● Fault localization (403)
● Abstract interpretation (primer in 403, covered in 503)
● Theorem proving (primer in 403, covered in 507)
● ...



Forward vs. backward reasoning

Forward reasoning
● Knowing: a fact that is true before execution.
● Reasoning: what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Forward vs. backward reasoning

Forward reasoning
● Knowing: a fact that is true before execution.
● Reasoning: what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Backward reasoning
● Knowing: a fact that is true after execution.
● Reasoning: what must have been true before execution.
● Given a postcondition, what precondition(s) must hold?

What are the pros and cons for each approach?

Forward vs. backward reasoning

Forward reasoning
● More intuitive for most people
● Helps understand what will happen (simulates the code)
● Introduces facts that may be irrelevant to the goal
● Set of current facts may get large
● Takes longer to realize that the task is hopeless

Backward reasoning
● Usually more helpful
● Helps understand what should happen
● Given a specific goal, indicates how to achieve it
● Given an error, gives a test case that exposes it

Pre/Post-conditions and Invariants



Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

Pre-conditions define execution validity. Post-conditions and loop 
invariants define expected properties of a correct implementation, 
given a valid execution.

Pre-conditions and post-conditions

 1 double avgAbs(double[] nums) {
 2  int n = nums.length;
 3  double sum = 0;
 4

 5  int i = 0;
 6  while (i != n) {
 7    if(nums[i]>0) {
 8      sum = sum + nums[i];
 9    else {
10      sum = sum - nums[i];
11    }
12    i = i + 1;
13  }
14  
15  return sum / n;
16 }

What are pre-conditions
and post-conditions of

this method (at the entry 
and exit points)?

Exit point

Entry point



Pre-conditions and post-conditions

 1 double avgAbs(double[] nums) {
 2  int n = nums.length;
 3  double sum = 0;
 4

 5  int i = 0;
 6  while (i != n) {
 7    if(nums[i]>0) {
 8      sum = sum + nums[i];
 9    else {
10      sum = sum - nums[i];
11    }
12    i = i + 1;
13  }
14  
15  return sum / n;
16 }

Pre-conditions
● nums is not null
● nums.length > 0

Post-conditions
● nums has not changed
● n > 0

● sum >= 0

● return value >= 0
● ...

(Loop) invariants

 1 double avgAbs(double[] nums) {
 2  int n = nums.length;
 3  double sum = 0;
 4

 5  int i = 0;
 6  while (i != n) {
 7    if(nums[i]>0) {
 8      sum = sum + nums[i];
 9    else {
10      sum = sum - nums[i];
11    }
12    i = i + 1;
13  }
14  
15  return sum / n;
16 }

Does this loop terminate?
What are pre-conditions, 

post-conditions,
and loop invariants?

Summary

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

How are these related to software testing and debugging?

Dynamic vs. static analysis



Dynamic vs. static analysis: overview
Dynamic analysis

● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.

Dynamic vs. static analysis: overview
Dynamic analysis

● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.

Soundly approximate 
program behavior.

Dynamic vs. static analysis: overview
Dynamic analysis

● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

Dynamic vs. static analysis: overview
Dynamic analysis

● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.

<y is even, x is even>

y = x++

<y is even, x is odd>



Dynamic vs. static analysis: overview
Dynamic analysis

● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.

The statement “f returns a 
non-negative value” is 
weaker (but easier to 
establish) than the statement
“f returns the absolute value 
of its argument”.

Dynamic analysis: examples

Software testing

double avg(double[] nums) {
  int n = nums.length;
  double sum = 0;

  int i = 0;
  while (i<n)
    sum = sum + nums[i];
    i = i + 1;
  
  double avg = sum / n;

  return avg;
}

A test for the avg function:

@Test                                                                                  
public void testAvg() {
  double nums =

  new double[]{1.0, 2.0, 3.0});
  double actual = Math.avg(nums);
  double expected = 2.0;
  assertEquals(expected,actual,EPS);                                              
} 

static OSStatus
SSLVerifySignedServerKeyExchange(...) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify returned %d\n", (int)err);
goto fail;

}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Static analysis: examples
Anything wrong with 

this code?
static OSStatus
SSLVerifySignedServerKeyExchange(...) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify returned %d\n", (int)err);
goto fail;

}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Static analysis: examples
Apple’s “goto fail” bug: 
a security vulnerability 

for 2 years!



Static analysis: examples

Rule/pattern-based analysis (PMD, Findbugs, Error Prone, etc.)

double avg(double[] nums) {
  int n = nums.length;
  double sum = 0;

  int i = 0;
  while (i<n) {
    sum = sum + nums[i];
    i = i + 1;
  }
  double avg = sum / n;

  return avg;
}

double avg(double[] nums) {
  int n = nums.length;
  double sum = 0;

  int i = 0;
  while (i<n)
    sum = sum + nums[i];
    i = i + 1;
  
  double avg = sum / n;

  return avg;
}

Static analysis: examples

Compiler: type checking

double avg(double[] nums) {
  int n = nums.length;
  double sum = 0;

  int i = 0;
  while (i<n) {
    sum = sum + nums[i];
    i = i + 1;
  }
  double avg = sum / n;

  return avg;
}

double avg(double[] nums) {
  int n = nums.length;
  double sum = 0;

  int i = 0.0;
  while (i<n) {
    sum = sum + nums[i];
    i = i + 1;
  }
  double avg = sum / n;

  return avg;
}

Dynamic vs. static analysis: summary

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Does not generalize
● Slow if exhaustive


