CSE 403

Software Engineering
Winter 2023

Program analysis

This week: Program analysis

e Reasoning about programs (Today)
e Statistical fault localization (Wednesday)
e In-class exercise (Friday)

Recap: Delta Debugging

Recap: Delta Debugging

Test case
1 Testing A1, Aj
2 = Increase granularity] Subsets
3 lesting Ay, ..., Ay
4
5
6 . .
7 Vi ; 3 4 5 6 7 8| Testingcomplements
8 Vs 1 2 . . 5 6 7 8| = Reducetocy = Vj;continue withn =3
9 Ay . 2 . : ; ; ; : Testing A1, Ay, Aj
10 Aj 5 6 . . * same fest carried out in an earlier step
11 A371 8
12 \% 5 6 7 8| Testingcomplements
13 \%) 1. 2 5 w & « 7 8 = Reduce to c;, = V3; continue withn = 2
4 A=V1 2 Testing A1, Aj
I5|A=Vy 7 8| = Increase granularity
16 Ay 1| TestingAy,..., Ay
17 Aj 2
18 A3 7
19 Ay N T
20 Vi .2 T 8| Testingcomplements
21 Vs 1 7 8| = Reducetocy = Vy;continue withn =3
22 Ay T Testing Aq,. .., A3
23 Aj 7
24 A3 i w % o® ¥ @ 2w B
2> Vi .« T 8| Testingcomplements
26 Vs r 8
27 V3 T T . Done
Result 1 7 8

Granularity

Recap: Delta Debugging

Step | Test case
1l Ay=V% |1 2 3 4 Testing A1, Aj
21 A=V¢ 5 6 7 8 = Increase granularity
3 Aq k 2 Testing Aq,. .., Ay
4 Ay 3 4
5 A3 5 6 .
6 Ay . . 7 8
7 Vi 3 4 5 6 7 8| Testingcomplements
8 Vs 1. 2 5 6 7 8| = Reducetocy = Vj;continue withn =3
9 Ay 1. 2 Testing A1, Ay, Aj
10 Aj 5 6 * same fest carried out in an earlier step
11 A3 . 7 8
12 \% 5 6 7 8| Testingcomplements
13 \%) 1 2 7 8 = Reduce to c;, = V3; continue withn = 2
4| A=V(1 2 Testing A1, Aj
15| A=WV 7 8 | = Increase granularity
16 A 1 Testing Ay, ..., Ay
17 Aj 2
18 A3 7
19 Ay ; 8
20 Vi 2 7 8 | Testing complements
21 Va 1 7 8 = Reduce to ¢, = V3; continue withn =3
22 Ay 1 Testing Aq,. .., A3
23 Aj 7
24 A3 . 8
2> Vi 7 8 | Testing complements
26 Vs 1 8
27 V3 T T . Done

Result L & & = % % 1 8

] Complements

Recap: Delta Debugging
Step | Test case

1| A=WV 2 ... Testing A1, Aj
21 A=V ; 6 7 8 = Increase granularity
3 Aq 2 Testing Ay, ..., Ay
4 Aj .
5 A3 6 . .
6 Ay .7 8
7 Vi ; 6 7 8| Testing complements

[8 \%) 2 6 7 8 = Reduce to ¢, = V»; continue with n = 3
9 Ay 2 ; Testing A1, Ay, Aj
10 Aj 6 . . * same fest carried out in an earlier step
11 A3 .7 8
12 \% : 6 7 8| Testing complements
13 \%) 2 7 8 = Reduce to c;, = V3; continue withn = 2
14| A=WV 2 s Testing A1, Aj
15| A=WV 7 8 | = Increase granularity
16 Ay . Testing Ay, ..., Ay
17 Aj 2 3
18 A3 7 =
19 Ay ; . 8
20 Vi 2 7 8 | Testing complements
21 Va 7 8 = Reduce to ¢, = V3; continue withn =3
22 Ay . Testing Aq,. .., A3
23 Aj 7 =
24 A3 . 8
2> Vi 7 8 | Testing complements
26 \%) . 8
27 V3 7 . Done

Result 7 8

Recap:

Reduce

Delta Debugging
Step | Test case

1l Ay=V% |1 2 3 4 Testing A1, Aj

21 A=V¢ 5 6 7 8 = Increase granularity

3 Aq L 2 - Testing Ay, ..., Ay

4 Ay 3 4

5 A3 5 6

6 Ay . .7 8

7 Vi ; 3 4 5 6 7 8| Testingcomplements

8 Vs 1. 2 5 6 7 8| = Reducetocy = Vj;continue withn =3
9 Aq T 2 Testing Ay, Ay, Aj

10 Aj 5 6 * same fest carried out in an earlier step

11 A3 . 7 8

12 \% 5 6 7 8| Testingcomplements

13 \%) 1 2 7 8 = Reduce to c;, = V3; continue withn = 2
4| A=V(1 2 Testing A1, Aj

15| A=WV 7 8 | = Increase granularity

16 A 1 Testing Ay, ..., Ay

17 Aj 2

18 A3 7

19 Ay ; 8
20 Vi 2 7 8 | Testing complements
21 Va 1 7 8 = Reduce to ¢, = V3; continue withn =3
22 Ay 1 Testing Aq,. .., A3
23 Aj 7
24 A3 . 8
2> Vi 7 8 | Testing complements
26 Vs 1 8
27 V3 T T . Done

Result L & & = % % 1 8

Testing A1, Aj
= Increase granularity
Testing Ay, ..., Ay

Testing complements

= Reduce to ¢, = V»; continue with n = 3
Testing A1, Ay, Aj

* same test carried out in an earlier step

Testing complements

= Reduce to cy = V2; continue with n = 2
Testing A1, Aj

= Increase granularity

Testing Ay, ..., Ay

Testing complements
= Reduce to ¢, = V3; continue withn =3
Testing Aq,. .., A3

Testing complements

Recap: Delta Debugging
Step | Test case
1| A=WV 2 ...
21 A=WV : 6 7 8
3 A1 2
4 Aj .
5 Az 6 . .
6 Ay .7 8
7 % ; 6 7 8
8 v, 2 6 7 8
9 Ay 2 .
10 Ar 6 . .
11 A3z .7 8
12 Vi ; 6 7 8
13 \%) 2 7 8
4 [A =V, 2 .
15| A=V, 7 8
6 A,)
17 Aj 2 3
18 Aj 7 =
19 Ay ; . 8
20 Vi 2 7 8
21 \%) 7 8
22 A .
23 Aj 7 =
24 A3 . 8
25 V; 7 8
6 \%) . 8
27 V3 7 . Done
Result 7 8

Delta debugging: discussion

e Applicability: Is this useful (as a concept and/or automated tool)?
e Optimality: minimal vs. minimum test case.
e Complexity: Best-case vs. worst-case.

e Assumptions: monotonicity and determinism.

A

Passible failure causes Setupf v"hyp(! o515 Tos! first y'p« 1hess

/\ /\\

Second hypothesis Thirg hypaothesis Founh hypathesis

Narrowing down possible failure causes

https://www.st.cs.uni-saarland.de/dd/

Reasoning about programs

Reasoning about programs

Use cases
e \erification/testing: ensure code is correct
e Prove facts to be true, e.g.:
o X is never null
o Vyis always greater than O
o Input array a is sorted
e Debugging: understand why code is incorrect

Reasoning about programs

Use cases

Verification/testing: ensure code is correct
Prove facts to be true, e.g.:

o X is never null

o Vyis always greater than O

o Input array a is sorted

Debugging: understand why code is incorrect

Approaches

Testing (403)

(Delta) Debugging (403)

Fault localization (403)

Abstract interpretation (primer in 403, covered in 503)
Theorem proving (primer in 403, covered in 507)

Forward vs. backward reasoning

Forward reasoning

e Knowing: a fact that is true before execution.

e Reasoning: what must be true after execution.

e Given a precondition, what postcondition(s) are true?

Forward vs. backward reasoning /J
3

Forward reasoning

e Knowing: a fact that is true before execution.

e Reasoning: what must be true after execution.

e Given a precondition, what postcondition(s) are true?

Backward reasoning

e Knowing: a fact that is true after execution.

e Reasoning: what must have been true before execution.
e Given a postcondition, what precondition(s) must hold?

What are the pros and cons for each approach?

Forward vs. backward reasoning

Forward reasoning

More intuitive for most people

Helps understand what will happen (simulates the code)
Introduces facts that may be irrelevant to the goal

Set of current facts may get large

Takes longer to realize that the task is hopeless

Backward reasoning

Usually more helpful

Helps understand what should happen

Given a specific goal, indicates how to achieve it
Given an error, gives a test case that exposes it

Pre/Post-conditions and Invariants

Terminology

Pre-condition (to a function)
e A condition that must be true when entering (the function)
e May include expectations about the arguments

Post-condition (to a function)
e A condition that must be true when leaving (the function)

Terminology

Pre-condition (to a function)

e A condition that must be true when entering (the function)
e May include expectations about the arguments

Post-condition (to a function)
e A condition that must be true when leaving (the function)

Loop invariant

e A condition that must be true for every loop iteration
e Must be true at the beginning and end of the loop body

Terminology

Pre-condition (to a function)
e A condition that must be true when entering (the function)
e May include expectations about the arguments

Post-condition (to a function)
e A condition that must be true when leaving (the function)

Loop invariant
e A condition that must be true for every loop iteration
e Must be true at the beginning and end of the loop body

Pre-conditions define execution validity. Post-conditions and loop
invariants define expected properties of a correct implementation,
given a valid execution.

Pre-conditions and post-conditions

O 00 N OO0 U1 W N B

e S S S e
o U A W N RO

double avgAbs(double[] nums) {

int n = nums.lengthj;
double sum = ©;

int 1 = 9;
while (i !=n) {
if(nums[i]»>0) {
sum = sum + nums[i];
else {
sum = sum - nums[i];
}
i=1+ 1;

¥

return sum / n;

Entry point

)

What are pre-conditions
and post-conditions of
this method (at the entry
and exit points)?

Exit point

Pre-conditions and post-conditions

d

}

ouble avgAbs(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 = 9;
while (i !=n) {
if(nums[i]»>0) {
sum = sum + nums[i];
else {
sum = sum - nums[i];
}
i=1+ 1;

¥

return sum / n;

Pre-conditions

nums is not null
nums.length > ©

Post-conditions

nums has not changed
n > o

sum >= 0

return value >= 0

(Loop) invariants

double avgAbs(double[] nums) {
int n = nums.length;
double sum = ©;

int i = 0; : :
while (i 1= n) { Does this loop terminate?

if(nums[i]>0) { What are pre-conditions,
sum = sum + nums[1]; post-conditions,

else {

10 sum = sum - nums[i]; and loop invariants?

11 }

12 i

13}

14
15 return sum / n;

}

O 00 N o0 U1 W N R

=1+ 1;

Summary

Pre-condition (to a function)
e A condition that must be true when entering (the function)
e May include expectations about the arguments

Post-condition (to a function)
e A condition that must be true when leaving (the function)

Loop invariant
e A condition that must be true for every loop iteration
e Must be true at the beginning and end of the loop body

How are these related to software testing and debugging?

Dynamic vs. static analysis

Dynamic vs. static analysis: overview

Dynamic analysis
e Reason about the program based on some program executions.
e Observe concrete behavior at run time.
e Improve confidence in correctness.

Dynamic vs. static analysis: overview

Dynamic analysis

Reason about the program based on some program executions.

e (Observe concrete behavior at run time.

Improve confidence in correctness.

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states. N\
Reason over abstract domain.
Prove a property of the program.

Soundly approximate
program behavior.

/

Dynamic vs. static analysis: overview

Dynamic analysis

Reason about the program based on some program executions.

e (Observe concrete behavior at run time.

Improve confidence in correctness.

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states. A N\
. [y:=2, x:=2]
Reason over abstract domain.
Prove a property of the program. y = X++
[y:=2, x:=3]

Dynamic vs. static analysis: overview

Dynamic analysis

Reason about the program based on some program executions.

e (Observe concrete behavior at run time.

Improve confidence in correctness.

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states. : : N\
. <y IS even, X Is even>

Reason over abstract domain.

Prove a property of the program. y = X++

<y is even, x is odd>

/

Dynamic vs. static analysis: overview

Dynamic analysis
e Reason about the program based on some program executions.
e Observe concrete behavior at run time.
e Improve confidence in correctness.

Static analysis
e Reason about the program without executing it.

e Build an abstraction of run-time states. /The statement “freturnsa
e Reason over abstract domain. non-negative value” is
e Prove a property of the program: weaker (but easier to

establish) than the statement
“f returns the absolute value
of its argument”. /

Dynamic analysis: examples

Software testing

double avg(double[] nums) { | A test for the avg function:
int n = nums.length;

double sum = 0; QTest
public void testAvg() {
int 1 = 0; double nums =
while (i<n) new double[]{1.0, 2.0, 3.0});
sum = sum + nums[i]; double actual = Math.avg (nums);
i=1+ 1; double expected = 2.0;

assertEquals (expected, actual, EPS) ;
double avg = sum / n; }

~\\iiiiii_iiﬁi’///////”’—__——
}

Static analysis: examples

static OSStatus Anything wrong with
SSLVerifySignedServerKeyExchange(...) {

OSStatus err; this code?

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHAA1 final(&hashCtx, &hashOut)) |= 0)
goto fail;
err = ssIRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signaturelLen);
if(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: sslIRawVerify returned %d\n", (int)err);
goto fail;
}
fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Static analysis: examples —
static OSStatus Apples QOtO fall bug:

SSLVerifySignedServerKeyExchange(...) { a secu I"Ity vulnerability
OSStatus err; for 2 yearS'

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

A1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

S 3 HA1 final(&hashCtx, &hashOut)) != 0)
goto fail;
err = ssIRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signaturelLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslIRawVerify returned %d\n", (int)err);

goto fail;

}

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Static analysis: examples

Rule/pattern-based analysis (PMD, Findbugs, Error Prone, etc.)

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 =

Cwhile G

sum = sum + nums[i];
i=1+ 1;

double avg = sum / n;

\\:jijij_iiii///////”’—__—
}

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 =

<:QE£1G (1<n{::::>

sum = sum + nums[i];
i=1+ 1;
}
double avg =

sum / n;

\\\iiijii_izfi////////”'—__——
}

Static analysis: examples

Compiler: type checking

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

while (i<n) {
sum = sum + nums[i];
i=1+ 1;

}

double avg = sum / n;

\\:jijij_iiii///////”’—__—
}

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

Tinti=06; O
while (i<n) {
sum = sum + nums[i];
i=1+ 1;
}

double avg = sum / n;

\\\iiijii_izfj’///////f”’————_
}

Dynamic vs. static analysis: summary

Dynamic analysis Static analysis
e Concrete domain e Abstract domain
e Does not generalize e Sound but imprecise

e Slow if exhaustive e Slow if precise

