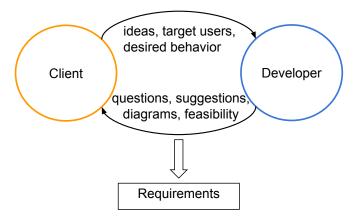
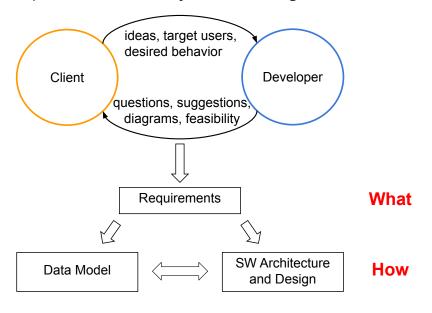
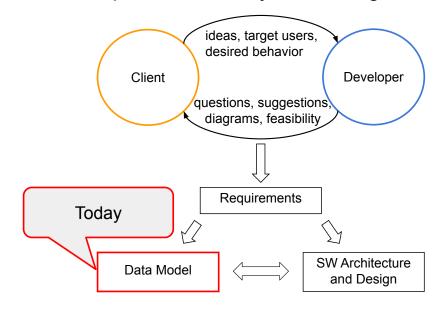

CSE 403

Software Engineering


Data modelling

From Requirements to System Design


From Requirements to System Design


From Requirements to System Design

From Requirements to System Design

From Requirements to System Design

Data Modelling

Goals for today

- How to model data?
 - o Identify Entities
 - Identify Attributes
 - o Identify Relationships
 - Assign Keys
 - o (Normalization to reduce redundancy)
 - (Denormalization to improve performance)
- Common "language" for data modelling
 - o ER (Entity-Relationship) diagrams
 - o Just one out of many possibilities (diagrams, tables, text)
- Develop a data model for a course-registration system

ER diagrams: overview

- An Entity Relationship (ER) diagram is a graphical representation of a data model.
- It shows the relationship between entities (e.g., people, objects, events, or concepts) within a system.
- It can be mapped to a relational (database) schema.

ER diagrams: graphical syntax

• An entity E

Ε

ER diagrams: graphical syntax

An entity E

E

• An attribute A of entity E

E A

ER diagrams: graphical syntax

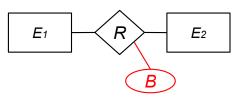
• An entity E

E

• An attribute A of entity E

E A

 A relationship R between two entities E1 and E2

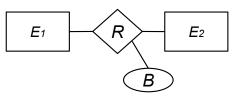


ER diagrams: graphical syntax

• An entity E

- E
- An attribute A of entity E
- E A
- A relationship R between two entities E1 and E2

• An attribute *B* of relationship *R*


ER diagrams: rules

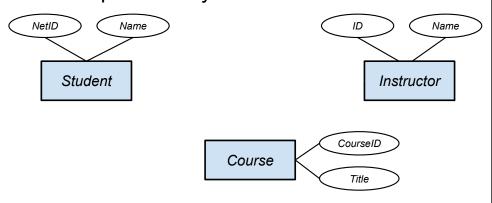
- An interconnecting line is only allowed between:
 - a box and a diamond,
 - o a box and an oval.
 - o a diamond and a oval.
- An oval must have exactly one connecting line.
- Names of boxes must be unique in the diagram.
- Names of ovals must be unique per box/diamond.

A first example

Let's model a simple course registration system:

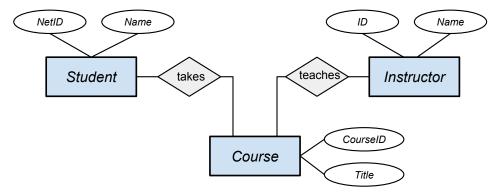
- Students
- Instructors
- Courses

A first example: identify entities

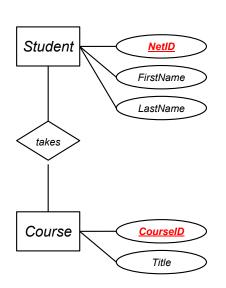

Student

Instructor

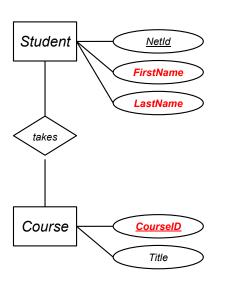
Course


What attributes should we add?

A first example: identify attributes


What relationships should we add?

A first example: identify relationships

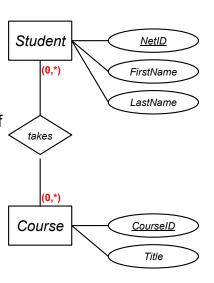

ER diagrams: keys and cardinalities

 A key is an (underlined) attribute, or a set of attributes, which uniquely identifies an entity.

ER diagrams: keys and cardinalities

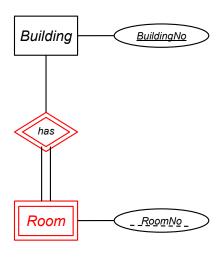
- A key is an (underlined) attribute, or a set of attributes, which uniquely identifies an entity.
- A key can be artificial or natural.

ER diagrams: keys and cardinalities

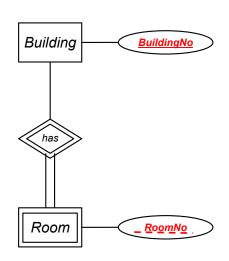

- A key is an (underlined) attribute, or a set of attributes, which uniquely identifies an entity.
- A key can be artificial or natural.
- The cardinalities define the kind of relationship (one-to-one, one-to-many, or many-to-many).
- There are different notations for cardinalities. For example:

$$\circ$$
 1 = (1,1)

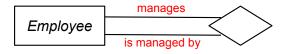
$$\circ$$
 c = (0,1)


$$\circ$$
 m = (1,*)

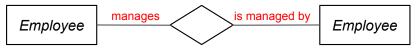
$$\circ$$
 mc = $(0,*)$


ER diagrams: weak entities

 A weak entity can't exist on its own (if a building is torn down, its rooms disappear).


ER diagrams: weak entities

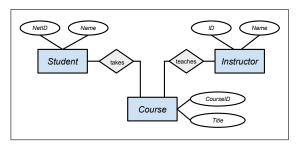
- A weak entity can't exist on its own (if a building is torn down, its rooms disappear).
- A weak entity is only uniquely identifiable in reference to another entity.



ER diagrams: self references and roles

• A self reference is usually explicitly annotated with roles to clarify the meaning of the self-referencing relationship.

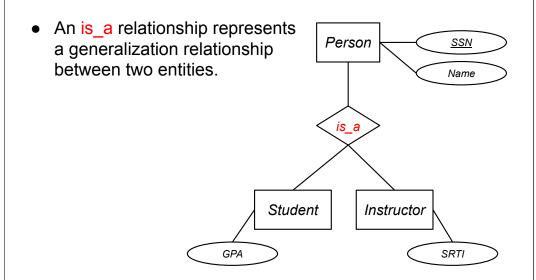
Think about (but never draw) the following:



Putting it all together

Let's augment our model of a course registration system:

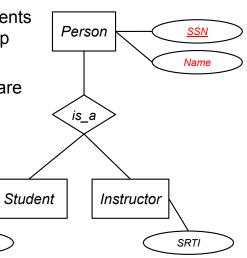
- Prerequisites
- Assignments
- Points/grades



Instructions

https://docs.google.com/presentation/d/1iUWnrOAwhrzkwPfp5AGXFdKUAFYSq-0oA-L9cbDyeCs/edit

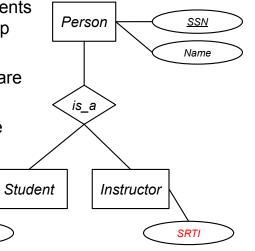
Additional material, not discussed in class


ER diagrams: generalization

ER diagrams: generalization

 An is_a relationship represents a generalization relationship between two entities.

 Attributes (including keys) are "inherited".


ER diagrams: generalization

 An is_a relationship represents a generalization relationship between two entities.

• Attributes (including keys) are "inherited".

GPA

Additional attributes can be defined.

