
CSE 403
Software Engineering

Version control and Git

Today

● Version control: why, who, how?
● Git: concepts and terminology

Why use version control?

11:51pm

Why use version control?



Version control
Version control records changes to a set of files over time.

This makes it easy to review or obtain a specific version (later).

Who uses version control?

Example application domains
● Software development
● Research (infrastructure and data)
● Applications (e.g., (cloud-based) word processors)

● One central repository.

● All users commit their changes
to a central repository.

● Each user has a working copy.
As soon as they commit, the 
repository gets updated.

● Examples: SVN (Subversion), CVS.

Centralized version control Distributed version control

● Multiple copies of a repository.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless pulled from another repository.

● Examples: Git, Hg (Mercurial).



A Fun Git Quiz

https://forms.gle/vG5yJo5LVAbA8fHQ7 

● clone: linked copy of repo
● fork: independent copy of repo
● add → commit → push

Git commands [Demo]

● git branch <branch_name>: create a branch
● git checkout <branch_name>: go to branch
● git checkout -b <branch_name>: both at same time
● git merge <branch_name>: bring all of `branch_name`s changes into 

current branch
● Pull Request for main ← <branch_name>: request to merge 

`branch_name` into main and see diff between them (GitHub operation)

Branches [Demo] Conflicts

● Conflicts arise when two users change the same line of a file.
● When a conflict arises, the last committer needs to resolve it.



● git fetch: downloads changes from remote repo without modifying 
working copy

● git pull = git fetch + git merge: downloads and merges changes from 
remote repo into working copy

Git pull/fetch [Demo]

How to avoid conflicts?

● Do git pull often before pushing
● If you are on a feature branch, do git pull 

origin/main before pushing so that merging 
feature branch → main is easier
○ Don’t have long-running feature branches, 

otherwise feature branch will get too 
outdated from main

Merge vs. Rebase

● Goal of rebase: prepare your work before delivery
○ “Let me clean up my feature branch so it's easier to 

read and merge.”
○ Action: copies all of feature branch’s commits on top 

of main (removes old commits)
○ Result: Your feature branch is now based on the 

latest main, and has a clean linear history.

● Command: On feature-branch, do git rebase main

Git rebase
Rebase: a powerful tool, but …

● Changes the commit history!
● Anyone else on the feature-branch will have the old 

commits, so it will be really hard for them to push to that 
branch!!

Do not rebase public branches!



Rebase: a powerful tool, but …

Everyone else’s 
feature branch!

Your feature branch

Merge vs Squash & Merge
● Goal: want a clean commit history when merging

○ don’t want to keep history of all of feature branch’s commits!
○ Action: squashes all of feature-branch’s new changes into a 

single new commit and puts that onto main
○ Result: main has all of feature-branch’s changes with only 1 

new commit

Not a Git command, 
only on GitHub

Squash & Merge
Summary of Git concepts



Conventions when using Git

● Use feature branches, don’t modify main directly
● Don’t merge to main directly: make a PR and request 

code reviews from colleagues before merging to main
● Commit & push often
● Have good commit messages
● No long-running feature branches
● Do git pull often to stay up-to-date with changes
● Have good communication with your colleagues to 

prevent merge conflicts


