CSE 403

Software Engineering

Version control and Git

Today

e \ersion control: why, who, how?
e Git: concepts and terminology

Why use version control?

Why use version control?

Common App Common App Common App Common App Common App Common App Common App Common App
Essay Essay EDITED Essay FINAL Essay FINAL Essay FINAL Essay OKAY THIS Essay REVISED Essay REVISED
FINAL FINAL REVISED IS THE FINAL FINAL

ONE

Version control

Version control records changes to a set of files over time.
This makes it easy to review or obtain a specific version (later).

Do you Yes
need it? ™ you do

Yis
Install
Git

Who uses version control?

Example application domains

e Software development

e Research (infrastructure and data)

e Applications (e.qg., (cloud-based) word processors)

Centralized version control

e One central repository.

e All users commit their changes
to a central repository.

e Each user has a working copy.
As soon as they commit, the
repository gets updated.

e Examples: SVN (Subversion), CVS.

Vorkstation/PC #1 Workstation/PC #2 Workstation/PC #3

Centralized version control

Server

P
7/

[Repository
\ A

!Workmg l orking” I Workmg |
. copy] _copy) l _copy

Distributed version control

e Multiple copies of a repository. Distributed version control

e Each user commits to a local S —
(private) repository. Rep°5”°‘j<J
. : Q\)‘»‘\ e ° ”\Q':'\‘-:ff{//
e All committed changes remain local - Q\)\\ 3lIE P
. PR 2 ¥ e AR
unless pushed to another repository. 'Repository I (Repository) kReposntoryI
. —QT—/ W’ S A
e No external changes are visible e I o
g 9 g §
unless pulled from another repository. W%I ‘VV%’ W‘%l
(copy _copy k copy

e Examples: Git, Hg (Mercurial).

A Fun Git Quiz

https://forms.qgle/vG5yJo5LVAbASIHQY

https://forms.gle/vG5yJo5LVAbA8fHQ7

Git commands [Demo]

e clone: linked copy of repo
e fork: independent copy of repo
e add —» commit — push

_ e
& : g
" Remote repository sy .

m B
git pull git push

r

git commit

g &
Local repository

git add
Working directory J

Branches [Demo]

git branch <branch_name>: create a branch

git checkout <branch_name>: go to branch

git checkout -b <branch_name>: both at same time

git merge <branch_name>: bring all of "branch_name's changes into
current branch

Pull Request for main — <branch_name>: request to merge
‘branch_name’ into main and see diff between them (GitHub operation)

master

merge

new_feature

Conflicts

Hello, Hello,
world! cat!
Merge conflict!
Hello,

dog!

e Conflicts arise when two users change the same line of a file.
e \When a conflict arises, the last committer needs to resolve it.

Git pull/fetch [Demo]

git fetch: downloads changes from remote repo without modifying

working copy
git pull = git fetch + git merge: downloads and merges changes from

remote repo into working copy

How to avoid conflicts?

e Do git pull often before pushing
e If you are on a feature branch, do git pull
origin/main before pushing so that merging
feature branch — main is easier
o Don't have long-running feature branches,
otherwise feature branch will get too
outdated from main

Merge vs. Rebase

e Goal of rebase: prepare your work before delivery
o “Let me clean up my feature branch so it's easier to
read and merge.”
o Action: copies all of feature branch’s commits on top
of main (removes old commits)
o Result: Your feature branch is now based on the
latest main, and has a clean linear history.

e Command: On feature-branch, do git rebase main

Git rebase

\% \%

Rebase: a powerful tool, but ...

e Changes the commit history!
e Anyone else on the feature-branch will have the old

commits, so it will be really hard for them to push to that
branch!!

Do not rebase public branches!

+YOU ARE ENTERING A*

WORLD OF PAIN

Rebase: a powerful tool, but ...

Everyone else’s

feature branch!
Y v

Your feature branch

Merge vs Squash & Merge

e Goal: want a clean commit history when merging
o don’t want to keep history of all of feature branch’s commits!
o Action: squashes all of feature-branch’s new changes into a
single new commit and puts that onto main
o Result: main has all of feature-branch’s changes with only 1
new commit

Create a merge commit
All commits from this branch will be added to
the base branch via a merge commit.

Not a Git command, [NEEEEEEIEUCRUELCE
/ The 14 its f this b h will k
on/y oh GItHUb e commi rom tni ranch will be

combined into one commit in the base branch.

Rebase and merge
The 14 commits from this branch will be
rebased and added to the base branch.

Squash & Merge

Main

Feature Q e
Main G

Squash and merge: D + E into F in Main

Summary of Git concepts

Local Remote

working staging
directory area

—

Conventions when using Git

Use feature branches, don’t modify main directly
Don’t merge to main directly: make a PR and request
code reviews from colleagues before merging to main
Commit & push often

Have good commit messages

No long-running feature branches

Do git pull often to stay up-to-date with changes
Have good communication with your colleagues to
prevent merge conflicts

