CSE 503

 Software Engineering

 Software Engineering}

Winter 2021

Intro to Abstract Interpretation

January 13, 2021

Recap: static vs. dynamic analysis

Static analysis

- Reason about the program without executing it.
- Build an abstraction of run-time states.
- Reason over abstract domain.
- Prove a property of the program.
- Sound* but conservative.

Dynamic analysis

- Reason about the program based on some program executions.
- Observe concrete behavior at run time.
- Improve confidence in correctness.
- Unsound* but precise.

[^0]
Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Concrete domain

$$
0,1,2,3,4, \ldots
$$

Abstract domain
even, odd

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision

Abstract domain

Today

- Abstract interpretation
- Introduction
- Abstraction functions
- Concretization functions
- Transfer functions
- Lattices

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

Abstract interpretation sacrifices completeness (precision)

Abstract interpretation: applications

Compiler checks and optimizations

- Liveness analysis (register reallocation)
- Reachability analysis (dead code elimination)
- Code motion (while(cond)\{x = comp(); ...\})

Abstract interpretation: code examples

Liveness

```
public class Liveness {
    public void liveness() {
        int a;
        if (alwaysTrue()) {
            a = 1;
        }
        System.out.println(a);
    }
}
```


Abstract interpretation: example

Program
x = 0;
$y=$ read_even();
$x=y+1$;
$y=2 * x ;$
$x=y-2 ;$
$y=x / 2 ;$

Are all statements necessary?

Abstract interpretation: example

X_{1} is never read.

Abstract interpretation: example

Program
$x=0 ;$ $y=$ read_even ()$;$ $x=y+1 ;$ $y=2 * x ;$ $x=y-2 ;$ $y=x / 2 ;$

SSA form

$$
\begin{aligned}
& x_{1}=0 ; \\
& y_{1}=\text { read_even }() ; \\
& x_{2}=y_{1}+1 ; \\
& y_{2}=2 * x_{2} ; \\
& x_{3}=y_{2}-2 ; \\
& y_{3}=x_{3} / 2 ;
\end{aligned}
$$

$$
y_{3}=x_{3} / 2
$$

$$
y_{3}=\left(y_{2}-2\right) / 2
$$

$$
y_{3}=\left(2^{*} x_{2}-2\right) / 2
$$

$$
y_{3}=\left(2 *\left(y_{1}+1\right)-2\right) / 2
$$

$$
y_{3}=\left(2 * y_{1}+2-2\right) / 2
$$

$$
y_{3}=y_{1}
$$

$$
x_{3}=y_{1}{ }^{*} 2
$$

Symbolic reasoning shows simplification potential.

Abstraction function

Program

$$
\begin{aligned}
& x=0 ; \\
& y=\text { read_even }() ; \\
& x=y+1 ; \\
& y=2 * x ; \\
& x=y-2 ; \\
& y=x / 2 ;
\end{aligned}
$$

Concrete execution

$$
\begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array}
$$

Abstraction function

Program

$$
\begin{aligned}
& x=0 ; \\
& y=\text { read_even }() ; \\
& x=y+1 ; \\
& y=2 * x ; \\
& x=y-2 ; \\
& y=x / 2 ;
\end{aligned}
$$

Concrete execution

$$
\begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array}
$$

Mapping to abstract domain (even, odd)
$\{x=e ; y=e\}$
$\rightarrow\{x=0 ; y=e\}$

- $\{x=0 ; y=e\}$
$\rightarrow\{x=e ; y=e\}$
\{x=e; $y=e\}$

Abstraction function

Program
$x=0 ;$ $y=$ read_even ()$;$ $x=y+1 ;$ $y=2 * x ;$ $x=y-2 ;$ $y=$ $x / 2 ;$

Concrete execution

$$
\begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array}
$$

Mapping to abstract domain (even, odd)
$\rightarrow\{x=e ; y=e\}$
$\rightarrow\{x=0 ; y=e\}$
$\rightarrow\{x=0 ; y=e\}$
$\rightarrow\{x=e ; y=e\}$

- $\{x=e ; y=e\}$

But, what's the purpose of the abstraction function?

Abstraction function

Concrete ($P(\mathbb{N})$)

Abstract

What is the abstraction (α) of $\{4\}$?

Abstraction function

Concrete $(P(\mathbb{N})) \quad$ Abstract

What is the abstraction $(\boldsymbol{\alpha})$ of $\{8\}$?

Abstraction function

Concrete $(P(\mathbb{N})) \quad$ Abstract

What is the abstraction ($\boldsymbol{\alpha}$) of $\}$?

Abstraction function

Concrete $(P(\mathbb{N})) \quad$ Abstract

Concretization function

What is the concretization (γ) of \perp ?

Concretization function

What is the concretization (γ) of E ?

Concretization function

Concrete $(P(\mathbb{N})) \quad$ Abstract

Transfer function

Transfer function

Abstract interpretation: approximation

Do both paths lead to the same abstract state?

Abstract interpretation: approximation

Do both paths lead to the same concrete state?

Set, semilattice, lattice

Set, semilattice, lattice

Set

Set, semilattice, lattice

Set

- unordered collection of distinct objects

```
14
    3 2
```


Set, semilattice, lattice

Set

- unordered collection of distinct objects

```
14
    3 2
```


Partially ordered set

Set, semilattice, lattice

Set

- unordered collection of distinct objects

Partially ordered set

- Binary relationship \leq :
- Reflexive: $x \leq x$

- Anti-symmetric: $x \leq y \wedge y \leq x=>x=y$
- Transitive: $\mathrm{x} \leq \mathrm{y} \wedge \mathrm{y} \leq \mathrm{z}=>\mathrm{x} \leq \mathrm{z}$

Set, semilattice, lattice

Set

- unordered collection of distinct objects

Partially ordered set

- Binary relationship \leq :
- Reflexive: $x \leq x$

- Anti-symmetric: $x \leq y \wedge y \leq x=>x=y$
- Transitive: $\mathrm{x} \leq \mathrm{y} \wedge \mathrm{y} \leq \mathrm{z}=>\mathrm{x} \leq \mathrm{z}$

Join semilattice

Meet semilattice

Set, semilattice, lattice

Set

- unordered collection of distinct objects

Partially ordered set

- Binary relationship \leq :
- Reflexive: $x \leq x$

- Anti-symmetric: $x \leq y \wedge y \leq x=>x=y$
- Transitive: $x \leq y \wedge y \leq z=>x \leq z$

Join semilattice

- Partially ordered set with least upper bound (join)

Meet semilattice

- Partially ordered set with greatest lower bound (meet)

Set, semilattice, lattice

Set

- unordered collection of distinct objects

Partially ordered set

- Binary relationship \leq :
- Reflexive: $x \leq x$

- Anti-symmetric: $x \leq y \wedge y \leq x=>x=y$
- Transitive: $x \leq y \wedge y \leq z=>x \leq z$

Join semilattice

- Partially ordered set with least upper bound (join)

Meet semilattice

- Partially ordered set with greatest lower bound (meet)

Lattice

- Both a join semilattice and a meet semilattice

Lattice: example

Abstract domain: even, odd, unknown (T), \{\} (」)

Lattice: example

Abstract domain: -, 0, +, unknown, \{\}

Lattice: example

Goal: approximate the values of x after the loop

```
int x = 0;
while (!isDone()) {
    x = x + 1;
}
```

What are possible abstract domains and their trade-offs?

Lattice: example

Goal: approximate the values of x after the loop

Possible abstract domains:

- Powerset of set of integers
- Intervals

[^0]: * Some static analyses are unsound; dynamic analyses can be sound.

