CSE 503

Software Engineering Winter 2021

Intro to Abstract Interpretation

January 13, 2021

Recap: static vs. dynamic analysis

Static analysis

- Reason about the program without executing it.
- Build an abstraction of run-time states.
- Reason over abstract domain.
- Prove a property of the program.
- Sound* but conservative.

Dynamic analysis

- Reason about the program based on some program executions.
- Observe concrete behavior at run time.
- Improve confidence in correctness.
- Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.

1. Precision vs. Recall (and FP/FN/TP/TN)

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness
- 3. Concrete domain vs. Abstract domain

Concrete domain

Abstract domain

0, 1, 2, 3, 4, ...

even, odd

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness
- 3. Concrete domain vs. Abstract domain
- 4. Accuracy vs. Precision

Today

• Abstract interpretation

- Introduction
- Abstraction functions
- \circ Concretization functions
- Transfer functions
- Lattices

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

Abstract interpretation sacrifices completeness (precision)

Abstract interpretation: applications

Compiler checks and optimizations

- Liveness analysis (register reallocation)
- Reachability analysis (dead code elimination)
- Code motion (while(cond) {x = comp(); ...})

Abstract interpretation: code examples

Liveness

Reachability

Abstract interpretation: example

Program

Are all statements necessary?

Abstract interpretation: example

$$X_1$$
 is never read.

Abstract interpretation: example

Symbolic reasoning shows simplification potential.

Program

Concrete execution

{x=0;	y=undef}
{x=0;	y=8}
{x=9;	y=8}
{x=9;	y=18}
{x=16;	y=18}
{x=16;	y=8}

Concrete execution {x=0; y=undef} {x=0; y=8} {x=9; y=8} {x=9; y=18} {x=16; y=18} {x=16; y=8} -

Mapping to abstract domain (even, odd)

But, what's the purpose of the abstraction function?

Concrete (P(ℕ))

Abstract

What is the abstraction (α) of {4}?

What is the abstraction (α) of {8}?

What is the abstraction (α) of {}?

Concretization function

What is the concretization (γ) of \perp ?

Concretization function

What is the concretization (γ) of **E**?

Concretization function

Transfer function

Transfer function

Abstract interpretation: approximation

Do both paths lead to the same abstract state?

Abstract interpretation: approximation

Do both paths lead to the same concrete state?

Set

• unordered collection of distinct objects

Set

• unordered collection of distinct objects

Partially ordered set

Set

• unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: $x \leq x$
 - Anti-symmetric: $x \leq y \land y \leq x \Rightarrow x = y$
 - Transitive: $x \leq y \land y \leq z \Rightarrow x \leq z$

Set

• unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: $x \leq x$
 - Anti-symmetric: $x \leq y \land y \leq x \Rightarrow x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Join semilattice

Meet semilattice

Set

• unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: $x \leq x$
 - Anti-symmetric: $x \leq y \land y \leq x \Rightarrow x = y$
 - Transitive: $x \leq y \land y \leq z \Rightarrow x \leq z$

Join semilattice

• Partially ordered set with least upper bound (join)

Meet semilattice

• Partially ordered set with greatest lower bound (meet)

Set

• unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: $x \leq x$
 - Anti-symmetric: $x \leq y \land y \leq x \Rightarrow x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Join semilattice

• Partially ordered set with least upper bound (join)

Meet semilattice

• Partially ordered set with greatest lower bound (meet)

Lattice

• Both a join semilattice and a meet semilattice

Abstract domain: even, odd, unknown (\top), {} ($_{\perp}$)

Abstract domain: -, 0, +, unknown, {}

Goal: approximate the values of x after the loop

What are possible abstract domains and their trade-offs?

Goal: approximate the values of x after the loop

```
...
int x = 0;
while (!isDone()) {
    x = x + 1;
}
...
```

Possible abstract domains:

- Powerset of set of integers
- Intervals
- ...