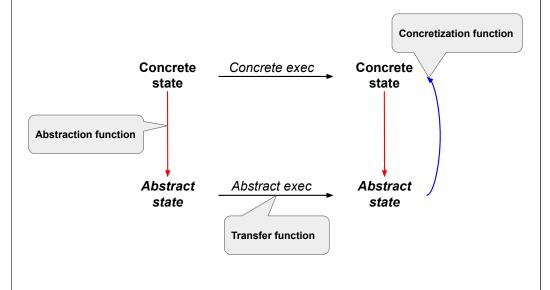
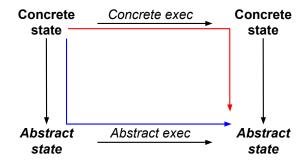

CSE 503

Software Engineering
Winter 2021

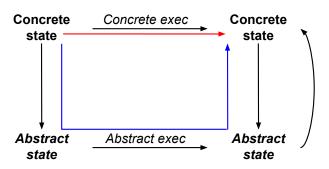
Abstract Interpretation


January 15, 2021

Recap: abstraction and concretization functions



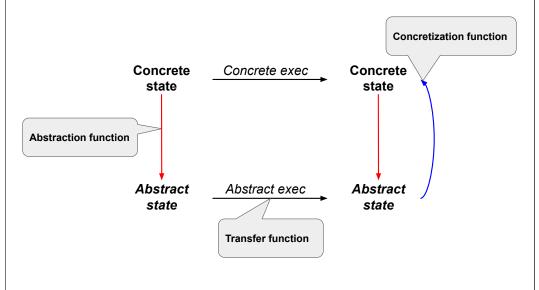
- Abstraction function α : $C \rightarrow A$
- Concretization function γ: A -> C


Recap: transfer function

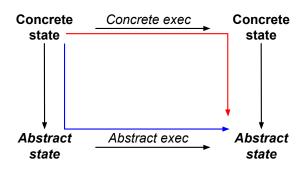
Recap: approximation

Recap: approximation

Today

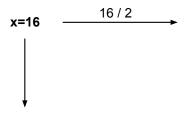

More on Abstract Interpretation

- Galois connection
- Transfer function vs. lub (vs. glb)
- Exercise: concrete examples

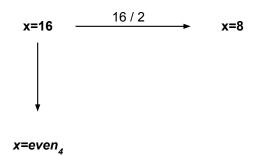

Next week

- Wrap up Abstract Interpretation
- CheckerFramework tutorial
- Hands-on applications
- Move on to dynamic and hybrid analyses

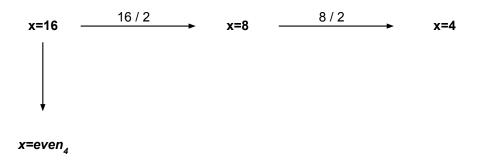
Abstract interpretation: big picture


Abstract interpretation: soundness

Sound approximation and safe approximation are synonyms.


Abstract interpretation: soundness example

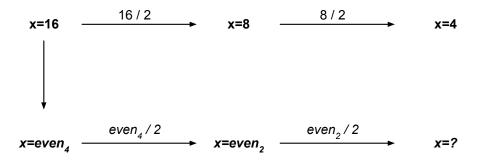
Abstract domain: {odd, even₂, even₄, ?}


Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

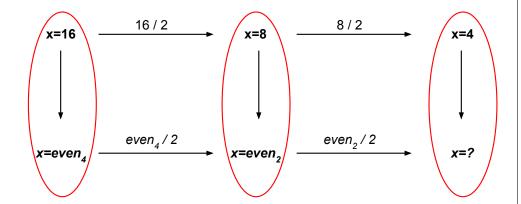
Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

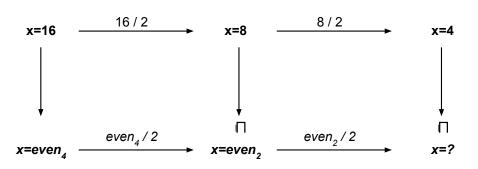

Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

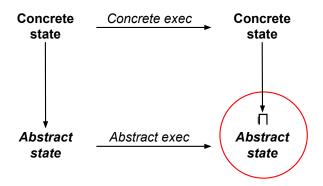
$$x=16$$
 $\xrightarrow{16/2}$
 $x=8$
 $x=4$
 $x=even_4$
 $x=even_4$
 $x=even_2$


Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

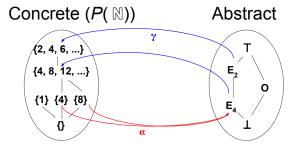

Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

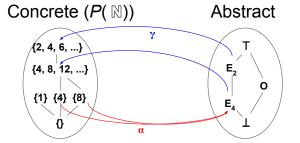


Abstract interpretation: soundness example

Abstract domain: {odd, even₂, even₄, ?}

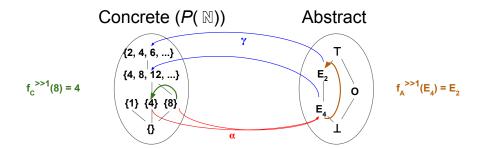


Abstract interpretation: soundness

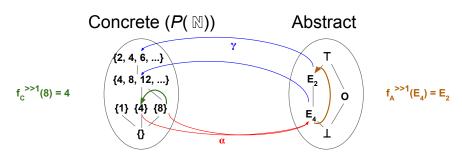

What properties must be satisfied by the abstraction, concretization, and transfer functions?

Sound approximation: properties

What properties must α and γ satisfy?


Sound approximation: galois connection

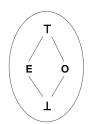
Galois connection


- α : $C \rightarrow A$
- v: A -> C
- $\forall c \in C: c \leq \gamma(\alpha(c))$
- γ and α are order preserving

Sound approximation: properties

What properties must the transfer function(s) satisfy?

Sound approximation: consistency


Transfer function

- Consistent with concrete function
 - c: concrete state; c' = f_c(c)
 - a: α(c)
 - \circ a' = $f_{\Lambda}(a)$
 - \circ c" = $\hat{\gamma}(a')$
 - o c' ≤ c"

Sound approximation: properties

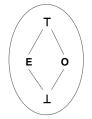
Transfer function

E E O T O O E T T T T T	+	Е	0	Т	
	Е	Е	0	Т	
T T T T	0	0	Е	Т	
	Т	Т	Т	Т	

Lub

• lub: A x A -> A

Iub(E, O) = T


What properties must the lub function satisfy?

Sound approximation: monotonicity

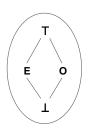
Transfer function

- f_A^+ : A x A -> A
- may not be monotone

+	Е	0	Т	
Е	Е	0	Т	
0	0	Е	Т	
Т	Т	Т	Т	

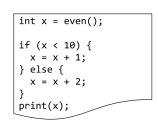
Lub

- lub: A x A -> A
- must be monotone

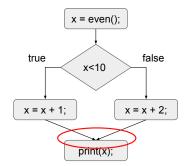

lub(E, O) = T

Sound approximation: example

Transfer function

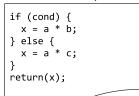

- f_Λ⁺: A x A -> A
- may not be monotone

+	Е	0	Т	
Е	Е	0	Т	
0	0	Е	Т	
Т	Т	Т	Т	



Lub

- lub: A x A -> A
- must be monotone



Small-group exercise

- Work through two examples:
 - Join vs. meet operation (f(int a, int b, int c): int)

Which parameters (a, b, c)

- will definitely be used?
- may be used?

(cond is independent of the parameters)

Termination/fix point iteration

Is the value of x after the loop an even number? Use an abstract domain with {odd, 2, even₂, and even₄}

• Report to class (random call)

Answers to the questions for the above two examples: https://docs.google.com/document/d/1bkAlBigNjFoi5wLyKwhj0ticybMmF4yTX4o74B5e5oo