
CSE 503
Software Engineering

Winter 2021

Software Testing

January 22, 2021

Today

● Course projects

● Introduction to software testing
○ Blackbox vs. whitebox testing
○ Unit testing (vs. integration vs. system testing)
○ Test adequacy: code coverage

■ Statement coverage
■ Decision coverage (Branch coverage)
■ Condition coverage
■ Path coverage

● Discussion of DART: Directed Automated Random Testing

Software Testing 101

Software testing vs. software debugging
Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

Software testing vs. software debugging
Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

Software testing vs. software debugging
Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

Two strategies: black box vs. white box

Black box testing
● The system is a black box (can’t see inside).
● No knowledge about the internals of a system.
● Create tests solely based on the specification (e.g.,

input/output behavior).

White box testing
● Knowledge about the internals of a system.
● Create tests based on these internals (e.g., exercise a

particular part or path of the system).

Unit testing, integration testing, system testing

Unit testing
● Does each unit work as specified?

Integration testing
● Do the units work when put together?

System testing
● Does the system work as a whole?

Unit testing

● A unit is the smallest testable part of the software system
(e.g., a method in a Java class).

● Goal: Verify that each software unit performs as specified.

● Focus:
○ Individual units (not the interactions between units).

○ Usually input/output relationships.

Test effectiveness

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

● A good test is one that fails because of a defect.

How do we come up with good tests?

Test effectiveness

Ratio of detected defects is the best effectiveness metric!

Problem
● The set of defects is unknowable.

Solution
● Use a proxy metric (e.g., code coverage or mutation analysis).

Structural code coverage: example

Average of the absolute values of an array of doubles

What’s the CFG for this method?

Structural code coverage: example

Average of the absolute values of an array of doubles

Statement coverage

● Every statement in the program must be
executed at least once.

● Given the control-flow graph (CFG), this is
equivalent to node coverage.

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions.

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a & b) { … }
■ a and b are conditions.
■ The boolean expression a & b is a decision.

Decision coverage (aka branch coverage)

● Every decision in the program must take on
all possible outcomes (true/false) at least once

● Given the CFG, this is equivalent to edge coverage

● Example: (a>0 & b>0)
○ a=1, b=1
○ a=0, b=0

Decision coverage (aka branch coverage)
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Condition coverage

● Every condition in the program must take on
all possible outcomes (true/false) at least once

● Example: (a>0 & b>0)
○ a=1, b=1
○ a=0, b=0

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Does statement coverage

subsume decision coverage?

○ Does decision coverage
subsume statement coverage?

○ Does decision coverage
subsume condition coverage?

○ Does condition coverage
subsume decision coverage?

Decision coverage vs. condition coverage

4 possible tests for the decision a | b:
1. a = 0, b = 0
2. a = 0, b = 1
3. a = 1, b = 0
4. a = 1, b = 1

Neither coverage criterion subsumes the other!

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1
Satisfies condition coverage

but not decision coverage
Does not satisfy condition

coverage but decision coverage

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Statement coverage does not subsume decision coverage
○ Decision coverage subsumes statement coverage
○ Decision coverage does not subsume condition coverage
○ Condition coverage does not subsume decision coverage

Path coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

num < 0 sum += numfalse

sum -= num

++i

num = a[i]

false

true

false

DART: Directed Automated Random Testing

Reading questions

1. A test case consists of two parts: test input(s) and a test oracle.
Briefly explain for each of the two parts how to derive it and
whether this process can be (easily) automated.

2. DART executes a program both concretely and symbolically.
Briefly explain the difference of these two types of executions in
DART and why both are necessary.

3. What are path constraints? Give one example for path
constraints that DART can solve and one example for path
constraints that it cannot. Briefly explain why.

4. Give an example for a test oracle that test cases generated by
DART use. Give one example for a test oracle that DART
cannot automatically generate and briefly explain why.

