
CSE 503
Software Engineering

Winter 2021

Invariants and reasoning about programs

February 10, 2021

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history
● Which git command can you use to undo a defect-inducing commit?

Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history
● Which git command can you use to undo a defect-inducing commit?

Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.
○ git revert
○ git reset
○ ...

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history
● Which git command can you use to undo a defect-inducing commit?

Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

DD: best case vs. worst case for duplicated inputs
● Given four inputs, which order is the best case vs. the worst case?

Recap: In-class exercise

Git bisect: mostly binary search
● What’s the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history
● Which git command can you use to undo a defect-inducing commit?

Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

DD: best case vs. worst case for duplicated inputs
● Given four inputs, which order is the best case vs. the worst case?

○ 1123
○ 1213
○ 2311
○ 2113
○ ...

Course overview: the big picture
● Week 1: Introduction

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

HW 1

HW 2

In-class exercise

Project presentation

Course overview: the big picture
● Week 1: Introduction

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

HW 1

HW 2

In-class exercise

Project presentation

Let’s take a step back

Reasoning about programs
Use cases
● Verification/testing: ensure code is correct
● Prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ input array a is sorted

● Debugging: understand why code is incorrect

Reasoning about programs
Use cases
● Verification/testing: ensure code is correct
● Prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ input array a is sorted

● Debugging: understand why code is incorrect

Approaches
● Abstract interpretation
● Testing
● Delta debugging
● Slicing
● Theorem proving
● ...

Forward vs. backward reasoning

Forward reasoning
● Knowing a fact that is true before execution.
● Reasoning about what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Backward reasoning
● Knowing a fact that is true after execution.
● Reasoning about what must be true before execution.
● Given a postcondition, what precondition(s) must hold?

What are the pros and cons for each approach?

Forward vs. backward reasoning

Forward reasoning
● More intuitive for most people
● Helps understand what will happen (simulates the code)
● Introduces facts that may be irrelevant to the goal
● Set of current facts may get large
● Takes longer to realize that the task is hopeless

Backward reasoning
● Usually more helpful
● Helps understand what should happen
● Given a specific goal, indicates how to achieve it
● Given an error, gives a test case that exposes it

Preconditions and postconditions

What are preconditions
and postconditions of

this method (at the entry
and exit points)?

Exit point

Entry point

Preconditions and postconditions

Preconditions
● is not null
●

Postconditions
● has not changed
●
●
●
● ...

(Loop) invariants

Does this loop terminate?
What are preconditions,

postconditions,
and loop invariants?

(Loop) invariants

Explicitly stating invariants
is hard -- reasoning about
inferred variants might be

easier.

Daikon live example

(https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usa
ge.html#Detecting-invariants-in-Java-programs)

https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usage.html#Detecting-invariants-in-Java-programs)
https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usage.html#Detecting-invariants-in-Java-programs)

Daikon: general workflow

Daikon: other use cases
Synoptic

Daikon: discussion

