CSE 503

Software Engineering
Winter 2021

Invariants and reasoning about programs

February 10, 2021

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Bisect position

Broken / \\ Stable

Inspecting commits

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history

e \Which git command can you use to undo a defect-inducing commit?
Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history

e \Which git command can you use to undo a defect-inducing commit?
Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.
o git revert
o git reset

O
Bisect position

—

Broken

Inspecting commits

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history

e \Which git command can you use to undo a defect-inducing commit?
Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

DD: best case vs. worst case for duplicated inputs
e Given four inputs, which order is the best case vs. the worst case?

Recap: In-class exercise

Git bisect: mostly binary search
e \What's the best, worst, and average case complexity of git bisect?

Undoing a commit vs. rewriting history

e \Which git command can you use to undo a defect-inducing commit?
Briefly explain what problem may generally occur when undoing a
commit and what best practices mitigate this problem.

DD: best case vs. worst case for duplicated inputs

e Given four inputs, which order is the best case vs. the worst case?
o 1123

1213

2311

2113

O O O O

Course overview: the big picture

e Week 1: Introduction HW 1

e Week 2: Abstract Interpretation

e Week 3: Abstract Interpretation HW 2

e Week 4: Testing

e Week 5: Delta Debugging In-class exercise
e Week 6: Invariants

e Week 7: Program Repair

e Week 8: Empirical Software Engineering

e Week 9: ML for Software Engineering

e Week 10: Wrap up Project presentation

Course overview: the big picture

e Week 1: Introduction HW 1

e Week 2: Abstract Interpretation

e Week 3: Abstract Interpretation HW 2

e Week 4: Testing

e Week 5: Delta Debugging In-class exercise
e Week 6: Invariants

e Week 7: Program Repair

e Week 8: Empirical Software Engineering

e Week 9: ML for Software Engineering

e Week 10: Wrap up Project presentation

Let’s take a step back

Reasoning about programs

Use cases
e \erification/testing: ensure code is correct
e Prove facts to be true, e.g.:
o X is never null
o Vyis always greater than O
o Input array a is sorted
e Debugging: understand why code is incorrect

Reasoning about programs

Use cases
e \erification/testing: ensure code is correct
e Prove facts to be true, e.g.:
o X is never null
o Vyis always greater than O
o Input array a is sorted
e Debugging: understand why code is incorrect

Approaches

Abstract interpretation
Testing

Delta debugging
Slicing

Theorem proving

Forward vs. backward reasoning

Forward reasoning

e Knowing a fact that is true before execution.

e Reasoning about what must be true after execution.
e Given a precondition, what postcondition(s) are true?

Backward reasoning

e Knowing a fact that is true after execution.
e Reasoning about what must be true before execution.
e Given a postcondition, what precondition(s) must hold?

What are the pros and cons for each approach?

Forward vs. backward reasoning

Forward reasoning

More intuitive for most people

Helps understand what will happen (simulates the code)
Introduces facts that may be irrelevant to the goal

Set of current facts may get large

Takes longer to realize that the task is hopeless

Backward reasoning

Usually more helpful

Helps understand what should happen

Given a specific goal, indicates how to achieve it
Given an error, gives a test case that exposes it

Preconditions and postconditions

O 00 N OO0 U1 W N B

= N =Y
o A W N R O

double avgAbs(double[] nums) {

int n = nums.length;

Entry point

)

double sum = ©;

int 1 = 0;
while (i != n) {
if(nums[i]»>0) {
sum = sum + nums[i];
else {
sum = sum - nums[i];
}
i=1+1;

¥

What are preconditions
and postconditions of
this method (at the entry
and exit points)?

return sum / n;

Exit point

Preconditions and postconditions

d

}

ouble avgAbs(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 = 0;
while (i != n) {
if(nums[i]»>0) {
sum = sum + nums[i];
else {
sum = sum - nums[i];
}
i=1+1;

¥

return sum / n;

Preconditions

nums is not null
nums.length > ©

Postconditions

nums has not changed
n > o

sum >= 0

return val >= 0

(Loop) invariants

double avgAbs(double[] nums) {
int n = nums.length;
double sum = ©;

int i = 0; : :
while (i != n) { Does this loop terminate?

if(nums[i]>0) { What are preconditions,

sum = sum + nums{1]; postconditions,
else {
10 sum = sum - nums[i]; and loop invariants?
11 }
12 i
13}
14
15 return sum / n;

}

O 00 N o0 U1 AW N R

=1+ 1;

(Loop) invariants

double avgAbs(double[] nums) {
int n = nums.length;
double sum = ©;

while (i != n) { Explicitly stating invariants

1
2
3
4
s int 1 = 0;
6
7
8
9

if(nums[i]>0) { IS hard -- reasoning about
sum = sum + nums[1]; inferred variants might be
else {
10 sum = sum - nums[i]; easler.
11 }
12 i=1+ 1;
13}

return sum / n;

Daikon live example

(https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usa
ge.html#Detecting-invariants-in-Java-programs)

https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usage.html#Detecting-invariants-in-Java-programs)
https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usage.html#Detecting-invariants-in-Java-programs)

Daikon: general workflow

Original
program

Instrumented
program

@

_

Instrument

=

Data trace

database

Run

Ll

Detect
invariants

Invariants

>

Daikon: other use cases

Synoptic

jrgp\gﬁ

aboD ngmlt

@@}mo%

tx-abort tx commit

InvariMint algorithm

~

Property Algorithm Composmon \
__types specification function .’

Property | Property | Property
miner instances composition

—
(@]
(i
T

—»Model

Daikon: discussion

Original
program

Instrumented
program

@

_

Instrument

@

Run

Data trace
database

L)

Detect
invariants

Invariants

>

