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Winter 2025

Course introduction

● Logistics and course overview
● Science vs. academia
● The scientific method

Today

Logistics and course overview

Instructor
● René Just (CSE2 338)
● Office hours: Wed 3pm – 4pm and by appointment
● rjust@cs.washington.edu

Teaching assistant
● Nino Migineishvili
● Office hours: TBD
● ninom@cs.washington.edu

The CSE 599K team



● CSE2 287, Mon/Wed, 1:30pm – 2:50pm.

● Lectures, discussions, presentations, and lab sessions.

● Course material, schedule, etc. on website: 
https://homes.cs.washington.edu/~rjust/courses/CSE599K 

● Submission of assignments via Canvas: 
https://canvas.uw.edu

Logistics Your background and expectations

Introduction and a very brief survey

● Field: What is your research area/interest?
● Stage: How long have you been in the (BS/MS/PhD) program?
● Experience: What is your empirical research experience?
● Top-2 expectations: What do you expect from this course?

Course overview: the big picture
● Week 1: Introduction & the Science in CS

● Week 2: Qualitative vs. Quantitative Research

● Week 3: (Revised) Campbellian Validity system

● Week 4: Software Engineering meets Science & Preregistration

● Week 5: Data Wrangling

● Week 6: Parametric vs. non-parametric statistics

● Week 7: Common statistical methods

● Week 8: (Generalized) linear models

● Week 9: Data visualization and reporting

● Week 10: Project presentations & wrap up

Course overview: this week
● Week 1: Introduction & the Science in CS

○ One high-level paper: Is computer science science?

○ Project: brainstorm project ideas



Course overview: the project
Logistics
● 2-3 team members (justified exceptions are possible)
● Synergies with your work are welcome!
● We are happy to provide/discuss project ideas.

Timeline
● Week 3/4: Project proposal and revision
● Week 5/6: Methodology and revision
● Week 8: Data collection and initial results
● Week 10: Presentation and final report

Questions?

Course overview: grading
● 50% Class project
● 20% Assignments
● 20% Paper reviews
● 10% Participation

In-class exercises (graded activities) have two parts
1. In-class part: Small-group work on a problem set
2. Take-home part: Reflection and submission of deliverables

Questions?

Other (UW) resources
● INFO 270: Calling Bullshit: Data reasoning in a digital world

https://callingbullshit.org
● Practical Statistics for HCI

https://depts.washington.edu/madlab/proj/ps4hci/
● Statistical Analysis and Reporting in R 

http://depts.washington.edu/madlab/proj/Rstats/

Course overview: the even bigger picture

● Engage in discussions
● Reason about research design and validity
● Read a few research papers
● Conduct a quarter-long research project
● Have fun!

Course overview: expectations



Science vs. academia

Science vs. academia

What’s the difference between science and academia?
● How are they related?
● How are they different?

The scientific method

The holy grail: objectivity in science



The scientific method
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Operationalization/hypothesis formalization



The scientific method
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The scientific method: common mistake

Hypothesis

Conclusions

Data 
collection

Data analysis

Observation

"If you torture the data long enough, it will confess."
[Ronald Harry Coase]

Model implementation loop

Hypothesis refinement loop

Hypothesis formalization: Empirical findings, software limitations, and design implications, Jun et al., TOCHI 2022

A more nuanced view: hypothesis formalization



A more nuanced view: common mistake

Model implementation loop

Hypothesis refinement loop

Hypothesis formalization: Empirical findings, software limitations, and design implications, Jun et al., TOCHI 2022

● Focuses on statistical results
● Lacks a clear conceptual model
● Operationalization is implicit

(mostly expressed in source code)

A more nuanced view: hypothesis formalization

Model implementation loop

Hypothesis refinement loop

Hypothesis formalization: Empirical findings, software limitations, and design implications, Jun et al., TOCHI 2022

Our goal is to explicate all steps.

A more nuanced view: a concrete example
Context
● We developed a new tool AutoPatcher that automatically fixes SW bugs.
● Currently, the tool AutoCoder is considered SOTA (state of the art).

Guiding question
● Is AutoPatcher better than AutoCoder ?

How do we operationalize this guiding question?

1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space

Is AutoPatcher better than AutoCoder ?

This is an oversimplification.
The actual design space is much larger.



1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space Reported design

Is AutoPatcher better than AutoCoder ?
1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space Reported design Alternative designs

Is AutoPatcher better than AutoCoder ?

1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space Reported design Alternative designs

The actual design 
space is huge. We are 

exploring a single 
path!

What can we conclude 
and how confident should 
we about our conclusion?

Is AutoPatcher better than AutoCoder ?
1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space Reported design Alternative designs

Analysis result robustness != Conclusion robustness

Is AutoPatcher better than AutoCoder ?



1. Define proxy for patch success (plausible vs. correct)
2. Choose evaluation benchmark (A-bench vs. B-bench)
3. Aggregation (mean vs. median)
4. Choose statistical test (T vs. U)

Design space Reported design Alternative designs

Reproducibility/Replicability vs. Multiverse Analysis

Is AutoPatcher better than AutoCoder ? Empirical research: a simplified checklist

● Analysis grounded in a conceptual model?
● Clear operationalization (implementation)?
● Implementation consistent with the model?
● Proper use of statistical methods?
● Data interpreted in context of prior knowledge?
● Explored and validated alternative hypotheses?

Why should you care?

Report valid claims based on reproducible research.

Why I care: my favorite quotes
Collaborators, students, reviewers:
● These results are bad and cannot be true.
● If you don’t trust my intuition, run your own experiments.
● These results are entirely expected.
● I have computed all the data; which statistical test should I 

use to show that my results are significant?
● Most papers are wrong or later obsolete, so who cares?
● I don’t understand these intervals, can you give a p value?



Collaborators, students, reviewers:
● These results are bad and cannot be true.
● If you don’t trust my intuition, run your own experiments.
● These results are entirely expected.
● I have computed all the data; which statistical test should I 

use to show that my results are significant?
● Most papers are wrong or later obsolete, so who cares?
● I don’t understand these intervals, can you give a p value?

Avoid confirmation bias; always assume you screwed up :)

Why I care: my favorite quotes
Collaborators, students, reviewers:
● These results are bad and cannot be true.
● If you don’t trust my intuition, run your own experiments.
● These results are entirely expected.
● I have computed all the data; which statistical test should I 

use to show that my results are significant?
● Most papers are wrong or later obsolete, so who cares?
● I don’t understand these intervals, can you give a p value?

Transform intuition and expectations into testable hypotheses!

Why I care: my favorite quotes

Collaborators, students, reviewers:
● These results are bad and cannot be true.
● If you don’t trust my intuition, run your own experiments.
● These results are entirely expected.
● I have computed all the data; which statistical test should I 

use to show that my results are significant?
● Most papers are wrong or later obsolete, so who cares?
● I don’t understand these intervals, can you give a p value?

"Statistical significance is the least interesting thing about the results"
[Sullivan and Fein: Using effect size -- or why the p value is not enough]

Why I care: my favorite quotes Next time

● The Science in CS
● Paper discussion: Is computer science science?


