CSE 599K

Empirical Research Methods

Winter 2025

Course introduction

Logistics and course overview

Today

- Logistics and course overview
- Science vs. academia
- The scientific method

The CSE 599K team

Instructor

- René Just (CSE2 338)
- Office hours: Wed 3pm 4pm and by appointment
- rjust@cs.washington.edu

Teaching assistant

- Nino Migineishvili
- Office hours: TBD
- ninom@cs.washington.edu

Logistics

- CSE2 287, Mon/Wed, 1:30pm 2:50pm.
- Lectures, discussions, presentations, and lab sessions.
- Course material, schedule, etc. on website: https://homes.cs.washington.edu/~rjust/courses/CSE599K
- Submission of assignments via Canvas: https://canvas.uw.edu

Your background and expectations

Introduction and a very brief survey

- Field: What is your research area/interest?
- Stage: How long have you been in the (BS/MS/PhD) program?
- Experience: What is your empirical research experience?
- **Top-2 expectations:** What do you expect from this course?

Course overview: the big picture

- Week 1: Introduction & the Science in CS
- Week 2: Qualitative vs. Quantitative Research
- Week 3: (Revised) Campbellian Validity system
- Week 4: Software Engineering meets Science & Preregistration
- Week 5: Data Wrangling
- Week 6: Parametric vs. non-parametric statistics
- Week 7: Common statistical methods
- Week 8: (Generalized) linear models
- Week 9: Data visualization and reporting
- Week 10: Project presentations & wrap up

Course overview: this week

- Week 1: Introduction & the Science in CS
 - One high-level paper: Is computer science science?
 - Project: brainstorm project ideas

Course overview: the project

Logistics

- 2-3 team members (justified exceptions are possible)
- Synergies with your work are welcome!
- We are happy to provide/discuss project ideas.

Timeline

- Week 3/4: Project proposal and revision
- Week 5/6: Methodology and revision
- Week 8: Data collection and initial results
- Week 10: Presentation and final report

Questions?

Course overview: the even bigger picture

Other (UW) resources

- INFO 270: Calling Bullshit: Data reasoning in a digital world https://callingbullshit.org
- Practical Statistics for HCI https://depts.washington.edu/madlab/proj/ps4hci/
- Statistical Analysis and Reporting in R http://depts.washington.edu/madlab/proj/Rstats/

Course overview: grading

- **50%** Class project
- 20% Assignments
- 20% Paper reviews
- 10% Participation

In-class exercises (graded activities) have two parts

- 1. In-class part: Small-group work on a problem set
- 2. Take-home part: Reflection and submission of deliverables

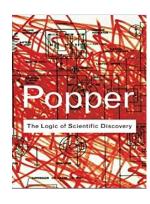
Questions?

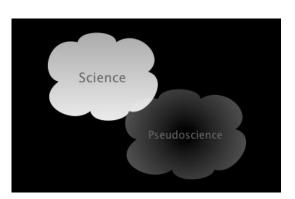
Course overview: expectations

- Engage in discussions
- Reason about research design and validity
- Read a few research papers
- Conduct a quarter-long research project
- Have fun!

Science vs. academia

The scientific method

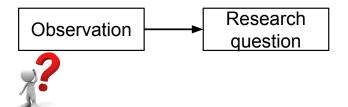

Science vs. academia



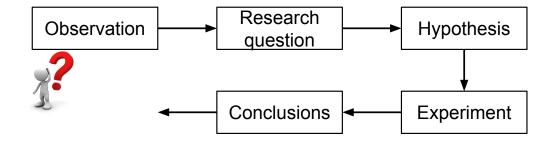
What's the difference between science and academia?

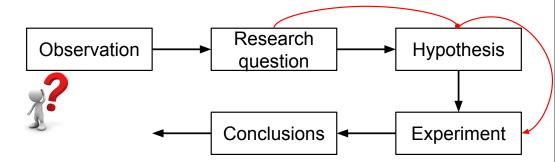
- How are they related?
- How are they different?

The holy grail: objectivity in science

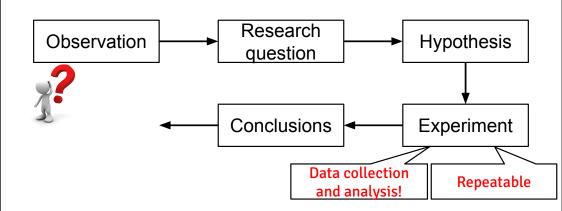


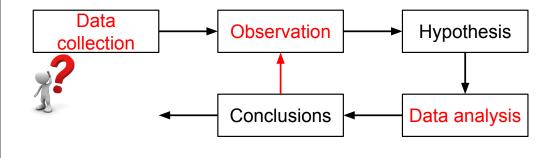
The scientific method


Observation


The scientific method

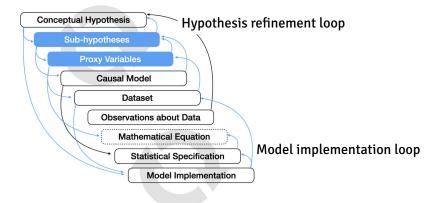
The scientific method


The scientific method


Operationalization/hypothesis formalization

Observation Research question Hypothesis Conclusions Experiment

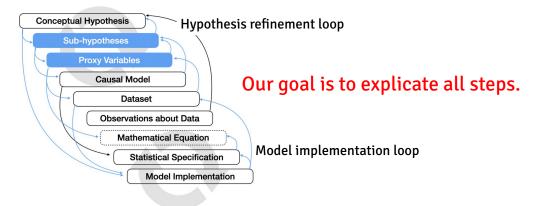
The scientific method



The scientific method: common mistake

"If you torture the data long enough, it will confess." [Ronald Harry Coase]

A more nuanced view: hypothesis formalization


 $Hypothesis\ formalization:\ Empirical\ findings,\ software\ limitations,\ and\ design\ implications,\ Jun\ et\ al.,\ TOCHI\ 2022$

A more nuanced view: common mistake

 $Hypothesis\ formalization:\ Empirical\ findings,\ software\ limitations,\ and\ design\ implications,\ Jun\ et\ al.,\ TOCHI\ 2022$

A more nuanced view: hypothesis formalization

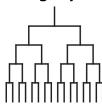
Hypothesis formalization: Empirical findings, software limitations, and design implications, Jun et al., TOCHI 2022

A more nuanced view: a concrete example

Context

- We developed a new tool AutoPatcher that automatically fixes SW bugs.
- Currently, the tool *AutoCoder* is considered SOTA (state of the art).

Guiding question


Is AutoPatcher better than AutoCoder?

How do we operationalize this guiding question?

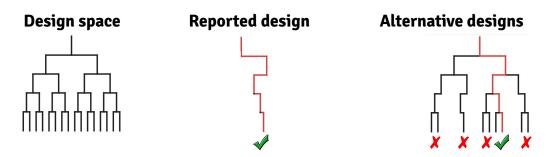
Is AutoPatcher better than AutoCoder?

- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)

Design space

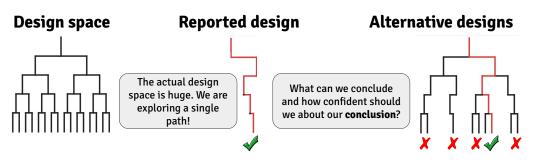
This is an oversimplification.

The actual design space is much larger.

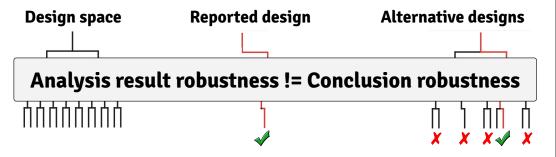

Is AutoPatcher better than AutoCoder?

- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)

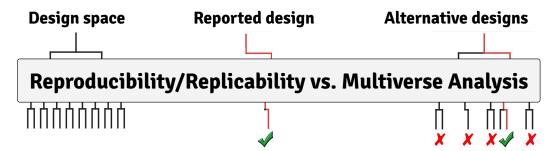
Design space Reported design


Is AutoPatcher better than AutoCoder?

- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)

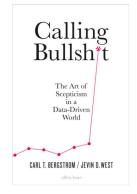

Is AutoPatcher better than AutoCoder?

- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)


Is AutoPatcher better than AutoCoder?

- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)

Is AutoPatcher better than AutoCoder?


- 1. Define proxy for patch success (plausible vs. correct)
- 2. Choose evaluation benchmark (A-bench vs. B-bench)
- 3. Aggregation (mean vs. median)
- 4. Choose statistical test (T vs. U)

Empirical research: a simplified checklist

- Analysis grounded in a conceptual model?
- Clear operationalization (implementation)?
- Implementation consistent with the model?
- Proper use of statistical methods?
- Data interpreted in context of prior knowledge?
- Explored and validated alternative hypotheses?

Why should you care?

Report valid claims based on reproducible research.

Why I care: my favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- If you don't trust my intuition, run your own experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don't understand these intervals, can you give a p value?

Why I care: my favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- If you don't trust my intuition, run your own experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don't understand these intervals, can you give a p value?

Avoid confirmation bias; always assume you screwed up:)

Why I care: my favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- If you don't trust my intuition, run your own experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don't understand these intervals, can you give a p value?

Transform intuition and expectations into testable hypotheses!

Why I care: my favorite quotes

Collaborators, students, reviewers:

- These results are bad and cannot be true.
- If you don't trust my intuition, run your own experiments.
- These results are entirely expected.
- I have computed all the data; which statistical test should I use to show that my results are significant?
- Most papers are wrong or later obsolete, so who cares?
- I don't understand these intervals, can you give a p value?

"Statistical significance is the least interesting thing about the results" [Sullivan and Fein: Using effect size -- or why the p value is not enough]

Next time

- The Science in CS
- Paper discussion: Is computer science science?