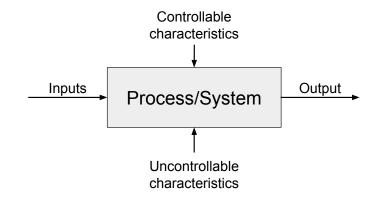
CSE 599K

Empirical Research Methods

Winter 2025


Study design and validity

Analysis design

Today

- Analysis design
- Confirmatory vs. exploratory analyses
- Analysis validity

Analysis design: overview

Kinds of variables

- Dependent variable
 - Outcome variable -- the measured response.
- Independent variable
 - Experimental variable -- systematically manipulated/controlled.
- Covariate
 - Experimental variable -- measurable but not controllable.

What are examples for covariates?

Kinds of studies

Experiment

- Independent variable(s) are directly manipulated/controlled.
- Repeatable with a testable hypothesis.
- Randomization (e.g., counterbalancing for within-subjects designs).

What is a quasi-experiment?

Types of variables

- Categorical (nominal)
 - Unordered set of values
 - Example: [HCI, PLSE, Robotics, UbiComp]
- Dichotomous (dichotomized or "natural" dichotomy)
 - Categorical with exactly two possible values
 - Example: [Day, Night]
- Ordinal

Controllable

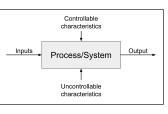
Process/System

Uncontrollable

Output

- Ordered set of values (no assumption about equidistant values)
- Example: [low, medium, high]
- Continuous/Interval
 - Ordered values (equidistant values)
 - Example: [0..100]

Kinds of studies


Experiment

- Independent variable(s) are directly manipulated/controlled.
- Repeatable with a testable hypothesis.
- Randomization (e.g., counterbalancing for within-subjects designs).

Observational study

- Variables are not manipulated/controlled.
- Useful if an experiment is impractical/unethical.
- Greater risk of spurious correlations.

Can you think of an example where an experiment would be impractical/unethical?

Kinds of studies

Experiment

- Independent variable(s) are directly manipulated/controlled.
- Repeatable with a testable hypothesis.
- Randomization (e.g., counterbalancing for within-subjects designs).

Observational study

- Variables are not manipulated/controlled.
- Useful if an experiment is impractical/unethical.
- Greater risk of spurious correlations.

Case study

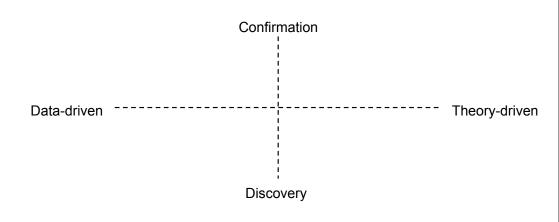
- Focus on one particular subject ("deep dive").
- Useful for qualitative analyses and interpretation of results.

Confirmatory vs. exploratory analyses

Study designs

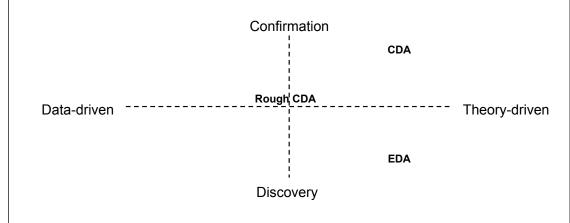
Between subjects design

• Independent variable(s) take on exactly one value for each subject.


Within subjects design

- Independent variable(s) take on multiple/all possible values for each subject.
- Repeated measures design.

Mixed design


• A mixed design of between-subjects variables and within-subjects variables.

Data analysis

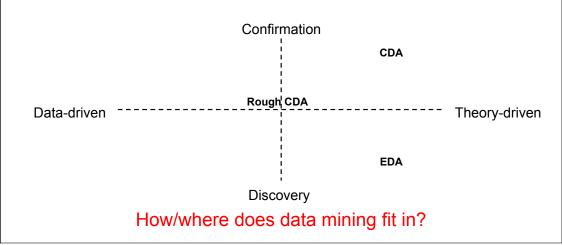
Test a hypothesis (once) Specify all data collection and analysis aspects in advance Preregistration Data-driven Unknown hypothesis Open-ended exploration Discovery

Data analysis

Data analysis

Confirmatory data analysis (CDA)

- Theory-driven confirmation of a hypothesis
- Pre-specified data analysis

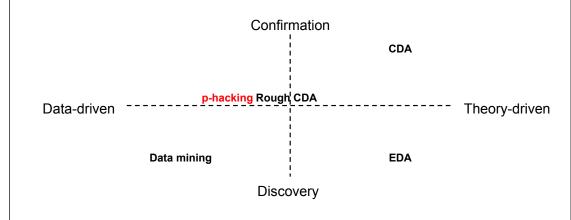

Exploratory data analysis (EDA)

- Theory-driven discovery
- Flexible data analysis
- New hypotheses or models may emerge

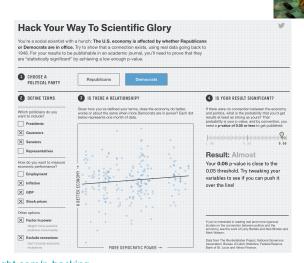
Rough CDA

- Theory- and data-driven confirmation of a hypothesis
- Flexible data analysis (researcher degrees of freedom)
- All design decisions and tests are reported

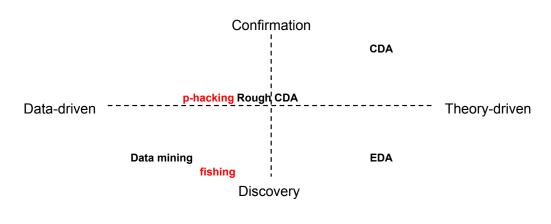
Data analysis



Data analysis Confirmation CDA Rough CDA Data-driven Data mining EDA


Discovery

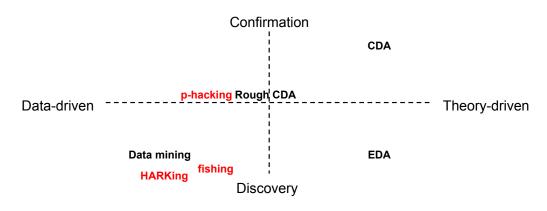
Data analysis: the dark side



Data analysis: the dark side

Data analysis: the dark side

https://projects.fivethirtyeight.com/p-hacking


Data analysis: the dark side

EATING OR DRINKING	IS LINKED TO	P-VALUI
Raw tomatoes	Judaism	<0.000
Egg rolls	Dog ownership	<0.0001
Energy drinks	Smoking	<0.0001
Potato chips	Higher score on SAT math vs. verbal	0.0001
Soda	Weird rash in the past year	0.0002
Shellfish	Right-handedness	0.0002
Lemonade	Belief that "Crash" deserved to win best picture	0.0004
Fried/breaded fish	Democratic Party affiliation	0.0007
Beer	Frequent smoking	0.0013
Coffee	Cat ownership	0.0016
Table salt	Positive relationship with Internet service provider	0.0014
Steak with fat trimmed	Lack of belief in a god	0.0030
Iced tea	Belief that "Crash" didn't deserve to win best picture	0.004
Bananas	Higher score on SAT verbal vs. math	0.007
Cabbage	Innie bellybutton	0.009

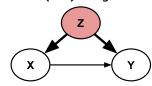
Data analysis: the dark side

Analysis validity

External, internal, and construct validity

External validity

- Does the experiment generalize (to larger population, other subjects, etc.)?
- How representative is the sample?
- Be aware of **WEIRD** subjects!
 - For example: studying mostly **Western, Educated** people from Industrialized, Rich, and Democratic countries.


External, internal, and construct validity

External validity

- Does the experiment generalize (to larger population, other subjects, etc.)?
- How representative is the sample?

Internal validity

- Does the experiment isolate the variable(s) of interest?
- Does the experiment control for confounders and unwanted effects?
- Be aware of carry-over effects (within-subjects designs)!
 - For example: order of tasks (subjects get accustomed to or tiered of a task).

External, internal, and construct validity

External validity

- Does the experiment generalize (to larger population, other subjects, etc.)?
- How representative is the sample?

Internal validity

- Does the experiment isolate the variable(s) of interest?
- Does the experiment control for confounders and unwanted effects?

Construct validity

- Does the experiment measure what it claims to measure?
- Do the proxy measures and tools adequately measure the concept of interest?

External, internal, and construct validity

Construct validity

- Does the experiment measure what it claims to measure?
- Do the proxy measures and tools adequately measure the concept of interest?
- Be aware of interactions (being tested vs. treatment) and bias!
 - For example: subjects may perform better/worse under test conditions.

Statistical concepts

(Statistical) conclusion validity

- Are the conclusions valid based on the chosen statistical test and sample size?
- Are the conclusions valid based on the observed significance (p value)?

Types of errors

- Type I error (false positive): rejecting a true null hypothesis
- Type II error (false negative): not rejecting a false null hypothesis

Analysis validity: open discussion

External validity

- Does the experiment generalize (to larger population, other subjects, etc.)?
- How representative is the sample?

Internal validity

- Does the experiment isolate the variable(s) of interest?
- Does the experiment control for confounders and unwanted effects?

Construct validity

- Does the experiment measure what it claims to measure?
- Do the proxy measures and tools adequately measure the concept of interest?

(Statistical) conclusion validity

- Are the conclusions valid based on the chosen statistical test and sample size?
- Are the conclusions valid based on the observed significance (p value)?