CSE 599K

Empirical Research Methods

Winter 2025

SE meets Science

Analysis validity

Today

- Recap: analysis validity
- SE principles for rigorous Science
- Two example studies

Analysis validity: open questions

External validity

- Does the experiment generalize (to larger population, other subjects, etc.)?
- How representative is the sample?

Internal validity

- Does the experiment isolate the variable(s) of interest?
- Does the experiment control for confounders and unwanted effects?

Construct validity

- Does the experiment measure what it claims to measure?
- Do the proxy measures and tools adequately measure the concept of interest?

(Statistical) conclusion validity

- Are the conclusions valid based on the chosen statistical test and sample size?
- Are the conclusions valid based on the observed significance (p value)?

SE principles for rigorous science

Science to practice is not a one-way street!

Let's improve scientific rigor with SE principles and best practices!

Design reviews

Design reviews are common in practice.

Embrace and value pre-registrations.

RFCs and public discussions (e.g., GH) provide valuable context.

Public (open) reviews should be a no-brainer!

Quality assurance

Modern code review is incremental (not holistic).

Move to pre-acceptance artifact evaluations.

Software testing is the most common QA approach in practice.

Require evidence for artifact testing.

Hark no more: On the preregistration of chi experiments, Cockburn et al., CHI 2018 https://openreview.net/

Expectations, outcomes, and challenges of modern code review, Bacchelli and Bird, ICSE 2013 Modern code review: a case study at Google, Sadowski et al., ICSE 2018

Process

Merge conflicts (branches) are resolved by branch authors.

Expect resolution (knowledge) of conflicting results.

Don't expect others to resolve your merge conflict!

Process

Merge conflicts (branches) are resolved by branch authors.

Expect resolution (knowledge) of conflicting results.

No premature optimizations.

Focus on **design validity** before scrutinizing artifacts.

Science is a collaborative effort!

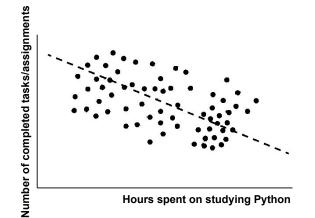
Software Engineering is a **collaborative effort**. We should view science the same way!

Science as Amateur Software Development

- 1. How can software engineering principles improve the rigor of data analyses?
- 2. Are these principles equally applicable to computational notebooks?
- 3. Describe three specific quality control mechanisms.
- 4. McElreath attributes a significant number of incorrect (scientific) studies to "sloth". What are the specific issues he is calling out, and what solutions does he propose?
- 5. Provide an argument for why or why not general-purpose programming languages such as Python are an adequate choice for data analysis.

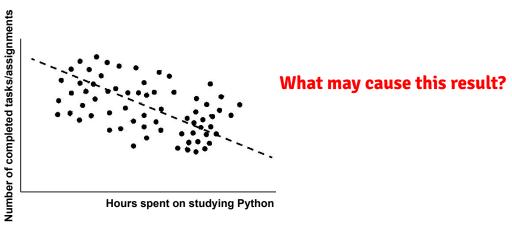
Two example studies

An example study: design

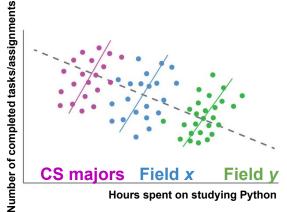

Goal:

Studying the **relationship** between **time spent** on **studying** Python and **success rate** in completing coding assignments.

Methodology:


- ~100 participants are randomly selected in front of CSE.
- Each participant is given a high-level overview of the study.
- Each participant decides on how long to study before attempting to solve any coding assignment.
- Each participant solves as many coding assignments as possible in one hour (after studying).

An example study: conclusions

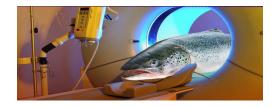

Conclusion: Spending more time on learning Python makes you a worse Python programmer.

An example study: conclusions

Conclusion: Spending more time on learning Python makes you a worse Python programmer.

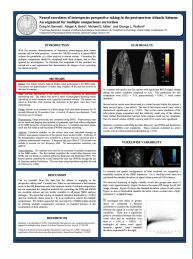
An example study: Simpson's paradox

Where did this study fail?


This phenomenon is called: Simpson's paradox.

Another example study

http://www.prefrontal.org/files/posters/Bennett-Salmon-2009.pdf


Another example study: design

Another example study: design

Subject: One mature **Atlantic Salmon** (Salmo salar) participated in the **fMRI study**. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was **not alive at the time of scanning**.

Another example study: design

Subject: One mature **Atlantic Salmon** (Salmo salar) participated in the **fMRI study**. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was **not alive at the time of scanning**.

Task: [...] open-ended mentalizing task. The salmon was shown a series of photographs depicting human individuals in social situations with a specified emotional valence. The salmon was asked to determine what emotion the individual in the photo must have been experiencing.

Another example study: conclusions

Subject: One mature **Atlantic Salmon** (Salmo salar) participated in the **fMRI study**. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was **not alive at the time of scanning**.

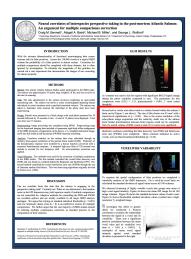
Task: [...] open-ended mentalizing task. The salmon was shown a series of photographs depicting human individuals in social situations with a specified emotional valence. The salmon was asked to determine what emotion the individual in the photo must have been experiencing.

Results: Several active voxels were discovered [...] Out of a search volume of 8064 voxels a total of **16 voxels** were significant.

Another example study: conclusions

Interpretation of pure noise

- Noisy data source
- Multiple hypotheses tested on the same data
- An argument for multiple comparisons correction
- Analysis grounded in a **conceptual model?**
- Clear operationalization (implementation)?
- Implementation consistent with the model?
- Proper use of statistical methods?
- Data interpreted in context of prior knowledge?
- Explored and validated alternative hypotheses?


An argument for multiple comparisons correctly and the property of the propert

Another example study: conclusions

Interpretation of pure noise

- Noisy data source
- · Multiple hypotheses tested on the same data
- An argument for multiple comparisons correction
- Analysis grounded in a conceptual model?
- Clear operationalization (implementation)?
- Implementation consistent with the model?
- Proper use of statistical methods?
- Data interpreted in context of prior knowledge?
- Explored and validated alternative hypotheses?

Valid data analysis goes well beyond implementation correctness.

Where did this study fail (on purpose)?