CSE 599K Empirical Research Methods

Winter 2025

Conceptual and statistical modeling

Today

- NHST: a concrete application
- (Generalized) Linear (Mixed) Models
- From conceptual to statistical modeling

A concrete NHST application: live demo

Linear Models

What are the use cases for linear models?

Two (and a half) use cases

- Statistical inference: parameter estimation
- Prediction (also explained variance): model accuracy

What are the key assumptions underlying linear models?

Assumptions

- Linearity
- Normality (residuals)
- Homoscedasticity (residuals)
- Independence (observations)
- Little to no multicollinearity (for inference).

How do we assess and interpret a linear model?

Interpretation of results

- Model fit: goodness of fit (R²)
- Inference: significance of coefficients

Which fitted linear model is "better"?

Linear models: live demo

Working with clustered (grouped) data (Generalized) Linear Model

- Split the data set by groups.
- Independently model outcome as a function of variables of interest.

An alternative approach: (G)LMMs

(Generalized) Linear Mixed Model

- Model fixed and random effects.
- Allow intercepts and/or slopes to vary.

Mixed models are commonly used for dependent observations.

Conceptual modeling vs. statistics

Confounding, Mediation, Moderation

Bauman et al., American Journal of Preventive Medicine, 2002