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ABSTRACT

Randomized algorithms have been used to successfully address many

different types of software engineering problems. This type of al-
gorithms employ a degree of randomness as part of their logic.
Randomized algorithms are useful for difficult problems where a
precise solution cannot be derived in a deterministic way within
reasonable time. However, randomized algorithms produce differ-
ent results on every run when applied to the same problem instance.
It is hence important to assess the effectiveness of randomized algo-
rithms by collecting data from a large enough number of runs. The
use of rigorous statistical tests is then essential to provide support
to the conclusions derived by analyzing such data. In this paper, we
provide a systematic review of the use of randomized algorithms in
selected software engineering venues in 2009. Its goal is not to per-
form a complete survey but to get a representative snapshot of cur-
rent practice in software engineering research. We show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms. There are numerous statistical tests,
based on different assumptions, and it is not always clear when and
how to use these tests. We hence provide practical guidelines to
support empirical research on randomized algorithms in software
engineering.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General;
1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Experimentation, Reliability, Theory

Keywords
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1. INTRODUCTION

Many problems in software engineering can be alleviated through
automated support. For example, automated techniques exist to
generate test cases that satisfy some desired coverage criteria on
the system under test, such as for example branch [26] and path
coverage [22]. Because often these problems are undecidable, de-
terministic algorithms that are able to provide optimal solutions in
reasonable time do not exist. The use of randomized algorithms
[44] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in soft-
ware engineering is perhaps random testing [13, 6]. Techniques
that use random testing are of course randomized, as for example
DART [22] (which combines random testing with symbolic execu-
tion). Furthermore, there is a large body of work on the application
of search algorithms in software engineering [25], as for example
Genetic Algorithms. Since practically all search algorithms are ran-
domized and numerous software engineering problems can be ad-
dressed with search algorithms, randomized algorithms therefore
play an increasingly important role. Applications of search algo-
rithms include software testing [41], requirement engineering [8],
project planning and cost estimation [2], bug fixing [7], automated
maintenance [43], service-oriented software engineering [9], com-
piler optimisation [11] and quality assessment [32].

A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never
converge towards an acceptable solution. Running a randomized
algorithm twice on the same instance of a software engineering
problem usually produces different results. Hence, researchers in
software engineering that develop novel techniques based on ran-
domized algorithms face the problem of how to properly evaluate
the effectiveness of these techniques.

To analyze the effectiveness of a randomized algorithm, it is im-
portant to study the probability distribution of its output or various
performance metrics [44]. For example, a practitioner might want
to know what is the execution time of those algorithms on average.
But randomized algorithms can yield very complex and high vari-
ance probability distributions, and hence looking only at average
values can be misleading, as we will discuss in more details in this
paper.

The probability distribution of a randomized algorithm can be
analyzed by running such an algorithm several times in an inde-
pendent way, and then collecting appropriate data about its results
and performance. For example, consider the case in which we want
to find failures in software by using random testing (assuming that
an automated oracle is provided). As a way to assess its perfor-
mance, we can sample test cases at random until the first failure is
detected. In the first experiment, we might find a failure after sam-
pling 24 test cases (for example). We hence repeat this experiment



a second time (if a pseudo-random generator is employed, we need
to use a different seed for it) and then, for example, trigger the first
failure when executing the second random test case. If in a third ex-
periment we obtain the first failure after generating 274 test cases,
the mean value of these three experiments would be 100. Using
such a mean to characterize the performance of random testing on
a set of programs would clearly be misleading given the extent of
its variation.

Since such randomness might hinder the reliability of conclu-
sions when performing the empirical analysis of randomized algo-
rithms, researchers hence face two problems: (1) how many ex-
periments should be run to obtain reliable results, and (2) how to
assess in a rigorous way whether such results are indeed reliable.
The answer to these questions lies in the use of statistical tests [52].
There are many books on various aspects of statistics (e.g., [52, 10,
36, 24, 60]), and that research field is still growing [60]. Notice
that though statistical testing is used in most if not all scientific
domains (e.g., medicine and behavioral science), each field has its
own set of constraints to work with. Even within a field like soft-
ware engineering the application context of statistical testing can
vary significantly. When human resources and factors introduce
randomness (e.g., [15, 28]) in the phenomena under study, the use
of statistical tests is also required but the constraints we work with
are quite different from those of randomized algorithms, such as
for example the size of data samples and the types of distributions.

Because of the widely varying situations across domains and the
overwhelming number of statistical tests, each one with its own
characteristics and assumptions, many practical guidelines have been
provided targeting different scientific domains, such as biology [46]
and medicine [29]. In this paper, we intend to do the same for ran-
domized algorithms in software engineering, as they entail specific
properties and the application of statistical testing is far from easy,
as we will see.

To assess whether the results obtained with randomized algo-
rithms are properly analyzed in software engineering research, and
therefore whether precise guidelines are required, we carried out a
small scale systematic review. We limited our analyses to the year
2009 as our goal was not to perform an exhaustive systematic re-
view but to obtain a representative, recent sample on which to draw
conclusions. We focused on research venues that deal with all the
aspects of software engineering, such as IEEE Transactions of Soft-
ware Engineering (TSE), IEEE International Conference on Soft-
ware Engineering (ICSE) and International Symposium on Search
Based Software Engineering (SSBSE). The review shows that sta-
tistical analyses are either missing, inadequate, or incomplete. For
example, though journal guidelines in medicine require a manda-
tory use of standardized effect size measurements [24] to quantify
the effect of treatments, we have not found a single case in which
this was used to measure the relative effectiveness of a randomized
algorithm. Furthermore, in half of the surveyed empirical analy-
ses, randomized algorithms were evaluated based on the results of
only one run and all the empirical analyses in TSE were based on a
maximum of five runs.

Given our survey’s results, we hence found necessary to devise
practical guidelines for the use of statistical testing in assessing
randomized algorithms in software engineering applications. Note
that though guidelines have been provided for other scientific do-
mains [46, 29] and for other types of empirical analyses in software
engineering [15, 28], they are not necessarily applicable in the con-
text of randomized algorithms. Our objective is therefore account
for the specific properties of randomized algorithms in software en-
gineering applications.

Notice that Ali et al. [3] have recently carried out a systematic re-

view of search-based software testing which includes some limited
guidelines on the use of statistical testing. This paper builds upon
that work by: (1) analyzing software engineering as whole and not
just software testing, (2) considering all types of randomized algo-
rithms and not just search algorithms, and (3) giving precise, prac-
tical, and complete suggestions on many aspects that were either
not discussed or just briefly mentioned in [3] .

The main contributions of this paper can be summarized as fol-
lows:

e We provide a systematic review of the current state of prac-
tice of the use of statistical testing to analyze randomized
algorithms in software engineering. The review shows that
randomness is not properly taken into account in the research
literature.

e We provide practical guidelines on the use of statistical test-
ing that are tailored to randomized algorithms in software
engineering applications and the specific properties and con-
straints they entail.

The paper is organized as follows. Section 2 presents the system-
atic review we carried out. Section 3 presents the concept of sta-
tistical difference in the context of randomized algorithms. Section
4 compares two kinds of statistical tests and discussed their impli-
cations in our context. The problem of censored data and how it
applies to randomized algorithms is discussed in Section 5. How to
measure effect sizes and therefore the practical impact of random-
ized algorithms is presented in Section 6. Section 7 investigates the
question of how many times randomized algorithms should be run.
The problems associated with multiple tests is discussed in Section
8. Practical guidelines on how to use statistical tests in our context
are summarized in Section 9. The threats to validity of our work are
discussed in Section 10. Finally, Section 11 concludes the paper.

2. SYSTEMATIC REVIEW

Systematic reviews are used to gather, in an unbiased and com-
prehensive way, published research on a specific subject and ana-
lyze it [30]. Systematic reviews are a useful tool to assess general
trends in published research, and they are becoming increasingly
common in software engineering [35, 15, 28].

In our review we want to analyze: (RQ1) how often random-
ized algorithms are used in software engineering, (RQ2) how many
runs were used to collect data, and (RQ3) which types of statistical
analyses were used to analyze those data.

To answer RQ1, we selected two of the main venues that deal
with all aspects of software engineering: IEEE Transactions of
Software Engineering (TSE) and IEEE International Conference
on Software Engineering (ICSE). We also considered the Inter-
national Symposium on Search-Based Software Engineering (SS-
BSE), which is a specialized venue devoted to search algorithms.
Because our goal is not to perform an exhaustive survey of existing
works, but simply to get an up-to-date snapshot of current practice
regarding the application of randomized algorithms in software en-
gineering research, we only considered 2009 publications.

We only retained full length research papers and, as a result, 20
short papers at ICSE and eight at SSBSE were excluded. A total
of 107 papers were considered: 48 in TSE, 50 in ICSE and nine
in SSBSE. These papers were manually checked to verify whether
in their empirical analyses randomized algorithms were used. This
left a total of 16 papers using randomized algorithms: three in TSE
(6.25% of the total 48), four in ICSE (8% of the total 50) and all
the nine papers in SSBSE (100%).



Notice that we excluded papers in which it was not clear whether
randomized algorithms were used. For example, the techniques de-
scribed in [27, 57] use external SAT solvers, and those might be
based on randomized algorithms, though we cannot say for sure.
Furthermore, even if a paper focused on presenting a deterministic,
novel technique, we included it when randomized algorithms were
used for comparison purposes (e.g., fuzz testing [18]). Table 1 sum-
marizes the results of this systematic review for the final selection
of 16 papers. The first thing that results clear is that randomized al-
gorithms are widely used in software engineering (RQ1): We found
them in 6% — 8% of the articles in TSE and ICSE.

To answer RQ2, the data in Table 1 show the number of times a
technique was run to collect data regarding its performance on each
artifact in the case study. Most of the time, data are collected from
only one run of the randomized algorithms. Only six cases out of
16 show at least 30 runs.

Regarding RQ3, only 5 out of 16 articles include empirical anal-
yses supported by some kind of statistical testing. More specifi-
cally, we can see t-tests and U-tests for when algorithms are com-
pared, and linear regressions when prediction models are built. How-
ever, no standardized effect size measures (Section 6) are reported
in any of these articles to quantify the relative effectiveness of al-
gorithms in an interpretable form.

Results in Table 1 clearly show that, when randomized algo-
rithms are employed, empirical analyses in software engineering
do not properly account for their random nature. Many of the novel
proposed techniques may indeed be useful, but the results in Table
1 cast serious doubts on the validity of most existing results.

Notice that some of empirical analyses in Table 1 do not use sta-
tistical tests since they do not perform any comparison of the tech-
nique they propose with alternatives. For example, in the award
winning paper at ICSE 2009, a search algorithm (i.e., Genetic Pro-
gramming) was used and was run 100 times on each artifact in the
case study [59]. However this algorithm was not compared against
simpler alternatives or even random search. If we look more closely
at the reported results in order to assess the implications of that lack
of comparison, we see that the total number of fitness evaluations
was 400 (a population size of 40 individuals that is evolved for 10
generations). This is an extremely low number (for example, for
test data generation in branch coverage it is often the case of us-
ing 100,000 fitness evaluations for each branch [26]) and we can
conclude that there is very limited search taking place, which im-
plies that a random search would have likely yielded similar results.
This is directly confirmed in the reported results in [59], in which
in half of the case study the average number of fitness evaluations
per run is at most 41, thus implying that, on average, appropriate
patches are found in the random initialization of the first population
before the actual evolutionary search even starts. This should not
be surprising as the search operators were tailored to the specific,
small set of bugs of the case study, which then led to an easy search
problem. As discussed in [3], a search algorithm should always be
compared against at least random search in order to check that the
algorithm is not simply successful because the search problem is
easy.

Since comparisons with simpler alternatives (at a very minimum
random search) is a necessity when one proposes a novel random-
ized algorithm or addresses a new software engineering problem
[3], statistical testing should be part of all publications reporting
such empirical studies. In this paper we provide specific guide-
lines on how to use statistical tests to support comparisons among
randomized algorithms.

Table 1: Results of systematic review.

Reference Venue  Repetitions Statistical Tests
[1] TSE 1/5 U-test
[40] TSE 1 None
[47] TSE 1 None
[42] ICSE 100 t-test, U-test
[59] ICSE 100 None
[18] ICSE 1 None
[33] ICSE 1 None
[4] SSBSE 1000 Linear regression
[21] SSBSE 30/500 None
[14] SSBSE 100 U-test
[20] SSBSE 50 None
[37] SSBSE 10 Linear regression
[31] SSBSE 10 None
[39] SSBSE 1 None
[34] SSBSE 1 None
[56] SSBSE 1 None

3. STATISTICAL DIFFERENCE

When a novel randomized algorithm A is developed to address a
software engineering problem, it is common practice to compare it
against existing techniques, in particular simpler alternatives. For
simplicity, let us consider just one alternative randomized algo-
rithm, and let us call it 3. For example, B can be random testing,
and A can be a search algorithm such as Genetic Algorithms or an
hybrid technique that combines symbolic execution with random
testing (e.g., DART [22]).

To compare A versus BB, we first need to decide which criteria
are used in the comparisons. Many different measures (/) can be
selected depending on the problem at hand and contextual assump-
tions, e.g., source code coverage, execution time. Depending on
our choice, we may want to either minimize or maximize M, for
example maximize coverage and minimize execution time.

To enable statistical analysis, we should run both .4 and B a large
enough number (n) of times, in an independent way, to collect in-
formation on the probability distribution of M for each algorithm.
A statistical test should then be used to assess whether there is
enough empirical evidence to claim a difference between the two
algorithms (e.g., the novel technique A is better than the current
state of the art B). A null hypothesis Hy is typically defined to
state that there is no difference between .4 and B. A statistical test
is used to verify whether we should reject the null hypothesis Ho.
However, what aspect of the probability distribution of M is being
compared depends on the used statistical test. For example, a #-test
compares the mean values of two distributions whereas others tests
focus on the median or proportions, as discussed in Section 4.

There are two possible types of error when performing statistical
testing: (I) we reject the null hypothesis when it is true (we are
claiming that there is a difference between two algorithms when
actually there is none), and (II) we accept Ho when it is false (there
is a difference but we claim the two algorithms to be equivalent).
The p-value of a statistical test denotes the probability of a Type
I error. The significant level o of a test is the highest p-value we
accept for rejecting Hy. A typical value, inherited from widespread
practice in natural and social sciences, is o = 0.05.

Notice that the two types of error are conflicting; minimizing the
probability of one of them necessarily tends to increase the prob-
ability of the other. But traditionally there is more emphasis on
not committing a Type I error, a practice inherited from natural sci-



ences where the goal is often to establish the existence of a natural
phenomenon in a conservative manner. In our context we would
only conclude that an algorithm A is better than 3 when the prob-
ability of a Type I error is below . The price to pay for a small
« value is that, when the data sample is small, the probability of
a Type II error can be high . The concept of statistical power [10]
refers to the probability of rejecting Ho when it is false (i.e., the
probability of claiming statistical difference when there is actually
a difference).

Getting back to our comparison of techniques .4 and B , let us
assume we obtain a p-value equal to 0.06. Even if one technique
seems significantly better than the other in terms of effect size (Sec-
tion 6), we would then conclude that there is no difference when
using the traditional o = 0.05 threshold. In software engineering,
or in the context of decision-making in general, this type of reason-
ing can be counter-productive. The tradition of using o = 0.05,
discussed by Cowles [12], has been established in the early part of
the last century, in the context of natural sciences, and is still ap-
plied by many across scientific fields. It has, however, an increasing
number of detractors [23] who believe that such thresholds are ar-
bitrary, and that researchers should simply report p-values and let
the reader decide in context.

When we need to make a choice between techniques .4 and B,
we would like to use the one that is more likely to outperform the
other. Whether we get a p-value lower than « bears little conse-
quence from a practical standpoint, as in the end we must select
an alternative, e.g., we must select a testing technique to verify the
system. However, as we will show in Section 7, obtaining p-values
lower than o = 0.05 should not be a problem when experimenting
with randomized algorithms. The focus of such experiments should
rather be on whether a given technique brings any practically sig-
nificant advantage, usually measured in terms of an estimated effect
size and its confidence interval, an important concept addressed in
Section 6.

In practice, the selection of an algorithm would depend on the p-
value of comparisons, the cost difference among algorithms (e.g.,
in terms of inputs), and the estimated effect size. Given a context-
specific decision model, the reader, using such information, could
then decide which technique is more likely to maximize benefits
and minimizes risk. In the simplest case where compared tech-
niques would have comparable costs, we would simply select the
technique with the best performance regardless of the p-values of
comparisons, even if as a result there is a non-negligible probability
that it will bring no particular advantage.

4. PARAMETRIC VS. NON-PARAMETRIC
TESTS

The two most used statistical tests are the ¢-test and the Mann-
Whitney U-test. These tests are used to compare two data samples
(e.g., the results of running n times algorithm .4 compared to 3 ).
The t-test is parametric, whereas the U-test is non-parametric.

A parametric test makes assumptions on the underlining distri-
bution of the data. For example, the #-test assumes normality and
equal variance of the two data samples. A non-parametric test
makes no assumption on the distribution of the data. Why there
is the need for two different types of statistical tests? A simple
answer is that, in general, non-parametric tests are less powerful
than parametric ones. When, due to cost or time constraints, only
small data samples can be collected, one would like to use the most
powerful test available if its assumptions are satisfied.

There is a large body of work regarding which of the two tests
should be used [16]. The assumptions of the #-test are in general

not met. Considering that the variance of the two data samples is
most of the time different, a Welch test should be used instead of a
t-test. But the problem of the normality assumption remains.

An approach would be to use a statistical test to assess whether
the data is normal, and, if the test is successful, then use a Welch
test. This approach increases the probability of Type I error, but is
often not necessary. In fact, the Central Limit theorem tells us that
t-test and Welch test are robust even when there is strong departure
from a normal distribution [52, 55]. But in general we cannot know
how many data points (n) we need to reach reliable results. A rule
of thumb is to have at least n = 30 for each data sample [52].

There are three main problems with such an approach: (1) if we
need to have a large n for handling departures from normality, then
it might be advisable to use a non-parametric test since, for a large
n, it might be powerful enough; (2) the rule of thumb n = 30 stems
from analyses in behavioral science, and, to the best of our knowl-
edge, there is no supporting evidence of its efficacy for randomized
algorithms in software engineering; (3) the Central Limit theorem
has its own set of assumptions, which are too often ignored. We
now discuss points (2) and (3) in more details by accounting for the
specific properties of the application of randomized algorithms in
software engineering, using software testing examples. This choice
was motivated by the fact that half the publications in search-based
software engineering are on software testing [25].

Random testing, when used to find a test case for a specific test-
ing target (e.g., a test case that triggers a failure or covers a partic-
ular branch/path) follows a geometric distribution. When there is
more than one testing target, e.g., full structural coverage, it follows
a coupon’s collector problem distribution [6]. Given 6 the proba-
bility of sampling a test case that covers the desired testing target,
then the expectation of random testing is ¢ = 1/6 and its variance
is 62 = (1 — 6) /62 (see [17]). Figure 1 plots the density function
of a geometric distribution with § = 0.01 and a normal distribution
with same p and 62. In this context, the density function repre-
sents the probability that, for a given number of sampled test cases
l, we cover the target after sampling exactly [ test cases. For ran-
dom testing, the most likely outcome is [ = 1, whereas for a normal
distribution itis [ = p. Notice that the geometric distribution is dis-
crete (i.e., it is defined only on integer values), whereas a normal
distribution is continuous. Furthermore, the density function of the
normal distribution is always positive for any value, whereas for the
geometric distribution it is equal to 0 for negative values, where in
this context the values are the number of sampled test cases. There-
fore, a testing technique can never follow a normal distribution in
a strict way, although it might be a reasonable approximation.

As it is easily visible in Figure 1, the geometric distribution has
a very strong departure from normality! Comparisons of novel
techniques versus random testing (and this is the practice when
search algorithms are evaluated [25]) using #-tests are hence very
arguable. Furthermore, in contrast to many physical and behav-
ioral phenomena, the probability distributions of search algorithms
are often strongly departing from normality. A common example is
when the search landscape of the addressed problem has trap-like
regions [48].

The Central Limit theorem states that the sum of n random vari-
ables converges to a normal distribution [17]. For example, con-
sider the result of throwing a dice. There are only six possible out-
comes, each one with probability 1/6. If we consider the sum of
two dice (i.e., n = 2), we have 11 possible outcomes, from value
2 to 12. Figure 2 shows that with n = 2, in the case of dice, we
already obtain a distribution that resembles the normal one, even
though with n = 1 it is very far from normality. In our context,
these random variables are the results of the n runs of the analyzed
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Figure 1: Density functions of random testing and normal
distribution given same mean p = 1/0 and variance o> =
(1 —0)/6%, where § = 0.01.

algorithm. This theorem has three assumptions: the n variables
should be independent and their mean p and variance 62 should
exist (i.e., they should be different from infinite). When using ran-
domized algorithms, having n independent runs is usually trivial to
achieve (we just need to use different seeds for the pseudo-random
generators). But the existence of the mean and variance requires
more scrutiny. As shown before, those values z and 62 exist for
random testing. A well known “paradox” in statistics in which
mean and variance do not exist is the Petersburg Game [17]. Sim-
ilarly, the existence of mean and variance in search algorithms is
not always guaranteed, as discussed next.

If the performance of a randomized algorithm is bounded within
a predefined range, then the mean and variance would always exist.
For example, if an algorithm is run for a prefix amount of time
to achieve structural coverage for software testing, and there are k
structural targets, then the performance of the algorithm would be
measured with a value between 0 and k. Therefore, we would have
p < kand 5% < k2, s0 using a ¢-test would be valid.

The problems arise if no bound is given on how the performance
is measured. A randomized algorithm could be run until it finds an
optimal solution to the addressed problem. For example, random
testing could be run until the first failure is triggered (assuming an
automated oracle is provided). In this case, the performance of the
algorithm would be measured in the number of test cases that are
sampled before triggering the failure and there would be no upper
limit for a run. If we run a search algorithm on the same problem
n times, and we have n variables X; representing the number of
test cases sampled in each run before triggering the first failure,
we would estimate the mean with 4 = % >, X, and hence
conclude that the mean exists. As Petersburg Game shows, this can
be wrong, because [ is only an estimation of p, which might not
exist.

For most search algorithms convergence in finite time is proven
under some conditions (e.g., [53]), and hence mean and variance
exist. But in software engineering, when new problems are ad-
dressed, standard search algorithms with standard search operators
may not be usable. For example, when testing for object-oriented
software using search algorithms, complex non-standard search op-
erators are required. Without formal proofs, it is not safe to speak
about the existence of the mean in those cases.

However, the non-existence of the mean is usually not a prob-
lem from a practical standpoint. In practice, there usually are up-

per limits to the amount of computational resources a randomized
algorithm can use. For example, a search algorithm can be prema-
turely stopped when reaching a time limit. Random testing could
be stopped after 100,000 sampled test cases (for example) if it has
found no failure so far. But in these cases, we are actually dealing
with censored data [36] (in particular, right-censorship) and this
requires proper care in terms of statistical testing and the interpre-
tation of results, as discussed in Section 5.

Even under proper conditions for using a parametric test, one as-
pect that is often ignored is that #-test and U-test are two different
approaches to analyze two different properties. Let us use a random
testing example in which we identify the first test case that triggers
a failure. Considering a failure rate 6, the mean value of sampled
test cases done by random testing is hence ;1 = 1/6. Let us assume
that a novel testing technique A yields a normal distribution of the
required number of test cases to trigger a failure. If we further con-
sider the same variance as random testing and mean that is 85%
of the one of random testing, which one is better? Random testing
with mean p or A with mean 0.854? Assuming a large number
of runs (e.g., n is equal to one million), a #-test would state that A
is better, whereas a Mann-Whitney U-test would state exactly the
opposite. How come? This is not an error but the two tests are mea-
suring different things: The #-test measures the difference in mean
values whereas the Mann-Whitney U-test deals with their stochas-
tic ranking, i.e., whether observations in one data sample are more
likely to be larger than observations in the other sample. Notice that
this latter concept is technically different from detecting difference
in the median values (which can be stated only if the two distribu-
tions have same shape). In a normal distribution, the median value
is equal to the mean, whereas in a geometric distribution the me-
dian is roughly 70% of the mean [17]. On one hand, half of the
data points for random testing would be lower than 0.7x. On the
other hand, for A we have half of the data points above 0.85x, and
a significant proportion between 0.7y and 0.854. This explains the
apparent contradiction in results.

From a practical point of view, which statistical test should be
used? Based on the discussions in this section, in contrast to [54]
and in line with [38], we suggest to use Mann-Whitney U-test rather
than #-test and Welch test. However, the full motivation will be-
come clear only once we discuss censored data, effect size, and the
choice of n in the next sections.

In the discussion above, we have assumed that both A and B are
randomized. If one of them is deterministic (e.g., B), it is still im-
portant to use statistical testing. Consistent with the above recom-
mendation, the One-Sample Wilcoxon test should be used. Given
mp the performance measure of the deterministic algorithm, a one-
sample Wilcoxon test would verify whether the performance of A
is symmetric about mg, i.e., whether by using .4 one is as likely to
obtain a value lower than mg as otherwise.

5. CENSORED DATA

Assume that the result of an experiment is dichotomous: either
we find a solution to solve the software engineering problem at
hand (success), or we do not (failure). For example, in software
testing, if our goal is to cover a particular target (e.g., a specific
branch), we can run a randomized algorithm with a time limit L.
We will stop the algorithm as soon as we find a solution, otherwise
we stop it after time L. The choice of L depends on the available
computational resources. Another example is bug fixing [59] where
we find a patch within time L, or we do not.

These types of experiments are dealing with right-censored data,
and their properties are equivalent to survival/failure time analysis
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Figure 2: Density functions of the outputs of one dice and the
sum of two dice.

[36]. Let X be the random variable representing the time a ran-
domized algorithm takes to solve a software engineering problem,
and let us consider n experiments in which we collect X; values.
We are dealing with right-censorship since, assuming a time limit
L, we will not have observations X; for the cases X > L. There
are several ways to deal with this problem [36] and we will limit
our discussion to simple solutions.

One interesting special case is when we cannot say for sure whether

we have achieved our target, e.g., generation of test cases that achieve
code branch coverage. Even when using a time limit L, in these
cases we are not tackling censored data. Putting aside trivial cases,
there are usually infeasible targets (e.g., unreachable code) and
their number is unknown. As a result, such experiments are not
dichotomous because we cannot know whether we have covered
all feasible targets. However, if in the experiments the comparisons
are made reusing a case study from the literature, and if we want
to know whether within a given time we can obtain better cover-
age than reported studies, then such experiments can be considered
dichotomous despite infeasible targets.

Let us consider the case in which we need to compare two ran-
domized algorithms .4 and B on a software engineering problem
with dichotomous outcome. Let X be the random variable repre-
senting the time .A takes to find a valid solution, and let Y be the
same type of variable for 3. Let us assume that we run A n times
collecting observations X;, and we do the same for 3. Using a time
limit L, to evaluate which of the two algorithms is better, we can
consider their success rate, i.e., the number of times out of the n
runs in which they find a valid solution. To evaluate whether there
is statistical difference between the success rates of A and 3, a test
for differences in proportions is then appropriate, such as the Fisher
exact test [36].

If there is no statistically or practically significant difference be-
tween the two success rates, from a practical standpoint, the prac-
titioner would then be interested to know which technique yields
a valid solution in less time. This is particularly important if the
success rates are high. There can be different ways to analyze such
cases, such as considering artificial censorships at different times
before L. For example, we can consider censorship at L/2, i.e.,
the success rate with half the time. Note that such analysis does
not require to run any further experiments. Another way is to ap-
ply a Mann-Whitney U-test, recommended above, using only the
times of successful runs, for which X; and Y; are lower than L.
One more complex situation is when one algorithm shows a sig-
nificantly higher success rate, but takes more time to produce valid
solutions. Since these two variables are not necessarily correlated,
a careful decision must then be made in these situations.

6. EFFECT SIZE

When comparing a randomized algorithm A against another B,
given a large enough number of runs n, it is most of the time pos-
sible to obtain statistically significant results with a #-test or U-test.
Indeed, two different algorithms are extremely unlikely to have ex-
actly the same probability distribution. In other words, with large
enough n we can obtain statistically difference even if that differ-
ence is so small as to be of no practical value.

Though it is important to assess whether an algorithm fares sta-
tistically better than another, it is in addition crucial to assess the
magnitude of the improvement. To analyze such a property, effect
size measures are needed [24, 28, 46]. In their systematic review of
empirical analyses in software engineering, Kampenes et al. [28]
found out that standardized effect sizes were reported in only 29%
of the cases. In our review, we found none.

Effect sizes can be divided in two groups: standardized and un-
standardized. Unstandardized effect sizes are dependent from the
unit of measurement used in the experiments. Let us consider the
difference in mean between two algorithms A = p* — 1%, This
value A has a measurement unit, that of .4 and B. For example, in
software testing, u can be the expected number of test executions
to find the first failure. On one testing artifact we might have A, =
pt — 1B =100 — 1 = 99, whereas on another testing artifact we
might have Ay = p — % = 100,000 — 200,000 = —100,000.
Deciding based on Ay and As which algorithm is better is difficult
to determine since the two scales of measurement are different. A
is very low compared to Az, but in that case A is 100 times worse
than B, whereas it is only twice as fast in the case A,. Empirical
analyses of randomized algorithms, if they are to be reliable and
generalizable, require the use of large numbers of artifacts (e.g.,
programs). The complexity of these artifacts is likely to widely
vary, such as the number of test cases required to fulfill a coverage
criterion on various programs. The use of standardized effect sizes,
that are independent from the evaluation criteria measurement unit,
is therefore necessary to be able to compare results across artifacts
and experiments.

In this section we first describe which is the most known stan-
dardized effect size measure and why it should nor be used. We
then describe two other standardized effect sizes, and how to ap-
ply them in practice. The most known effect size is the so called d
family which, in the general form, it is d = (u* — %) /o. In other
words, the difference in mean is scaled over the standard devia-
tion (several corrections exists to this formula, but for more details
please see [24]). Though we obtain a measure that has no measure-
ment unit, the problem is that it assumes the normality of the data,
and strong departures can make it meaningless [24]. For example,
in a normal distribution, roughly 64% of the points lie within p+ o
[17], i.e., they are at most o away from the mean p. But for dis-
tributions with high skewness (as in the geometric distribution and
as it is often the case for search algorithms), the results of scal-
ing the mean difference by the standard deviation “would not be
valid” [24], because “standard deviations can be very sensitive to
a distribution’s shape” [24]. In this case, a non-parametric effect
size should be preferred. Existing guidelines in [28, 46] just briefly
discuss the use of non-parametric effect sizes.

The Vargha and Delaney’s A1 statistics is a non-parametric ef-
fect size measure [58, 24]. Its use has been advocated in [38], and
one example of its use in software engineering in which random-
ized algorithms are involved can be found in [50]. In our context,
given a performance measure M, the A;o statistics measures the
probability that running algorithm A yields higher M values than
running another algorithm B. If the two algorithms are equivalent,
then A12 = 0.5. This effect size is easier to interpret compared



to the d family. For example, A1z = 0.7 entails we would obtain
higher results 70% of the time with .4. Though this type of non-
parametric effect size is not common in statistical tools, it can be
very easily computed [38, 24]. The following formula is reported
in [58]:

Aia = (Ri/m — (m+1)/2)/n (1)

where R; is the rank sum of the first data group we are com-
paring. The rank sum is a basic component in the Mann-Whitney
U-test, and most statistical tools provide it. In that formula, m is
the number of observations in the first data sample, whereas n is the
number of observations in the second data sample. In most experi-
ments, we would run two randomized algorithms the same number
of times: m = n.

When dealing with dichotomous results (as discussed in Section
5), several types of effect size measures [24] can be considered.
The odds ratio is the most used and “is a measure of how many
times greater the odds are that a member of a certain population
will fall into a certain category than the odds are that a member of
another population will fall into that category” [24]. Given a the
number of times algorithm .4 finds an optimal solution, and b for
algorithm B3, the odds ratio is calculated as ¢ = niﬁf - nf;‘i 5
where p is any arbitrary positive constant (e.g., p = 0.5) used to
avoid problems with zero occurrences [24]. There is no difference
between the two algorithms when ¢ = 1. The cases in which
¥ > 1 implies that algorithm A has higher chances of success.

Both A;2 and v are standardized effect size measures. But be-
cause their calculation is based on a finite number of observations
(e.g., n for each algorithm, so 2n when we compare two algo-
rithms), they are only estimates of the real Aj, and ™. If n is
low, these estimations might be very inaccurate. One way to deal
with this problem is to calculate confidence intervals (CI) for them
[24]. A (1 — «) Clis a a set of values for which there is (1 — )
probability that the value of the effect size lies in that range. For
example, if we have A1 = 0.54 and a (1 — «) CI with range
[0.49,59], then with probability (1 — «) the real value A}, lies in
[0.49,59] (where A12 = 0.54 is its most likely estimation). Such
effect size confidence intervals lead intuitively to decision making
as benefits, which are directly related to effect size, can be com-
pared to the costs of using alternative algorithms while accounting
for uncertainty. To see how confidence intervals can be calculated,
please see [24] and [58].

Notice that a confidence interval can replace a test of statistical
difference (e.g., t-test and U-test). If the null hypothesis Hy lies
within the confidence interval, then there is no enough statistical
evidence to claim there is a statistically significant difference. In
the previous example, because 0.5 is inside the (1—a) CI[0.49,59],
then there is no statistical difference at the selected significance
level «. For a dichotomous result, Hy would be ¢ = 1.

7. NUMBER OF RUNS

How many runs do we need when we analyze and compare ran-
domized algorithms? As many as necessary to show with high con-
fidence that the obtained results are statistically significant and to
obtain a small enough confidence interval for effect size estimates.
In many fields of science (e.g., medicine and behavioral science),
a common rule of thumb is to use at least n = 30 observations.
In the many fields where experiments are very expensive and time
consuming, it is in general not feasible to work with high values
for n. Several new statistical tests have been proposed and dis-
cussed to cope with the problem of lack of power and violation
of assumptions (e.g., normality of data) when smaller numbers of

observations are available [60].

Empirical studies of randomized algorithms do not involve hu-
man subjects and the number of runs (i.e., n) is only limited by
computational resources. When there is access to clusters of com-
puters as this is the case for many research institutes and universi-
ties, and when there is no need for expensive, specialized hardware
(e.g., in hardware-in-the-loop testing), then large numbers of runs
can be carried out to properly analyze the behavior of randomized
algorithms. Many software engineering problems are furthermore
not highly computationally expensive, as for example code cover-
age at the unit testing level, and can therefore involve very large
numbers of executions. There are however exceptions, such as the
system testing of embedded systems (e.g., [S]) where each test case
can be very expensive to run.

Whenever possible, in most cases, it is therefore recommended
to use a very high number of runs. For most problems in software
engineering, thousands of runs should not be a problem and would
solve most of the problems related to the power and accuracy of sta-
tistical tests. For example, as illustrated in [42, 14] in Table 1, even
when 100 runs are used the U-test might be not powerful enough
to confirm a statistical difference at a 0.05 significance level, even
when the data seem to suggest such a difference.

Most discussions in the literature about statistical tests focus on
situations with small numbers of observations (e.g., as in [54]).
However, with thousands of runs, one would detect statistically sig-
nificant differences on practically any experiment (see Section 3).
It is hence essential to complement such analyses with the study of
the effect size as discussed in Section 6. Even when having large
numbers of runs may not be necessary for a set « level (e.g., 0.05)
if differences of practical significance also show p-values less than
a, additional runs would help tighten the confidence intervals for
effect size and would be of practical value.

In Section 3, we suggested to use U-test instead of 7-test. For
very large samples, such as n = 1,000, there would be no prac-
tical difference between them regarding power and accuracy. The
choice of a non-parametric test would be driven by its effect size
measure. In Section 6 we argued that effect size measures based on
the mean (i.e., the d family) were not appropriate for randomized
algorithms in software engineering. It would be pointless to detect
statistical difference of mean values with a #-test if then we cannot
use a reliable measure for its effect size. In other words, it is ad-
visable to use size measures that are consistent with the differences
being tested by the selected statistical test.

8. MULTIPLE TESTS

In most situations, we need to compare several alternative al-
gorithms. Furthermore, if we are comparing different algorithm
settings (e.g., population sizes in a Genetic Algorithm), then each
setting technically defines a different algorithm. This often leads
to a large number of statistical comparisons. It is possible to use
statistical tests that deal with multiple techniques (treatments, ex-
periments) at the same time (e.g., Factorial ANOVA), and effect
size has been defined for those cases [24]. However, in our appli-
cation context, we would like to know the performance of each al-
gorithm compared against all other alternatives individually. Given
a set of algorithms, we would not be interested to simply determine
whether all of them have the same mean values. Rather, given K
algorithms, we want to perform Z = K (K — 1)/2 pairwise tests
and measure effect size in each case.

However, using several statistical tests inflates the probability of
Type I error. If we have only one comparison, the probability of
Type 1 error is equal to the obtained p-value. If we have many
comparisons, even when all the p-values are low, there is usually



a high probability that at least in one of the comparisons the null
hypothesis is true as all these probabilities somehow add up. In
other words, if in all the comparisons the p-values are lower than
a, then we would normally reject all the null hypotheses. But the
probability that at least one null hypothesis is true could be as high
as 1 — (1 — a)Z for Z comparisons, which converges to 1 as Z
increases.

One way to address this problem is to use the so called Bonfer-
roni adjustment [49, 45]. Instead of applying each test assuming
a significance level a, we would use an adjusted level a/Z. For
example, if we want a 0.05 probability of Type I error and we have
two comparisons, we would need to use two statistical tests with
a 0.025 a, and then check whether both differences are significant
(i.e., if both p-values are lower than 0.025). However, the Bonfer-
roni adjustment has been seriously criticized in the literature [49,
45], and we largely agree with those critiques. For example, let us
assume that for both those tests we obtain p-values equal to 0.04.
If a Bonferroni adjustment is used, then both tests will not be sta-
tistically significant. A researcher could be tempted to publish the
results of only one of them and claiming statistical significance be-
cause 0.04 < 0.05. Such a practice can therefore hinder scientific
progress by reducing the number of published results [49, 45]. This
would be particularly true in our application context in which many
randomized algorithms can be compared to address the same soft-
ware engineering problem: it would be very tempting to leave out
the results of some of the poorly performing algorithms. Though
we do not recommend the Bonferroni adjustment, it is important to
always report the obtained p-values, not just whether a difference
is significant or not. If for some reasons the readers want to evalu-
ate the results using a Bonferroni adjustment or any of its variants,
then it is possible to do so. For a full list of other problems related
to the Bonferroni adjustment, please see [49, 45]. Notice that there
are other adjustment techniques that are equivalent to Bonferroni
but that are less conservative [19]. However, the statistical signifi-
cance of a single comparison would still depend on the number of
performed and reported comparisons.

In Section 3 we stated that in software engineering in general,
and for randomized algorithms in particular, we mostly deal with
decision-making problems. For example, if we must test software,
then we must choose one alternative among K different techniques.
In this case, even if the p-values are higher than o, we need to test
the software anyhow and we must make a choice. In this context,
Bonferroni-like adjustments make even less sense. Just choosing
one alternative at random because there is no statistically signifi-
cant difference does not make much sense as it ignores available
information.

9. PRACTICAL GUIDELINES

Based on the above discussions, we propose a set of practical
guidelines for the use of statistical tests in experiments comparing
randomized algorithms. Though we expect exceptions, given the
current state of practice (Section 2 and [3, 28]), we believe that
it is important to provide practical guidance that will be valid in
most cases and enable higher quality studies to be reported. We
recommend that practitioners follow these guidelines and justify
any necessary deviation.

There are many statistical tools that are available. In the fol-
lowing we will provide examples based on R [51], because it is a
powerful tool that is freely available and supported by many statis-
ticians. But any other professional tool would provide similar ca-
pabilities.

Practical guidelines are summarized as follows. Notice that of-
ten, for reasons of space, it is not possible to report all the data of

the statistical tests. Based on the circumstances, authors need to
make careful choices on what to report.

e On each problem instance (e.g., program) in the case study,
run each randomized algorithm at least n = 1,000 times. If
this is not possible, explain the reasons and report the total
amount of time it took to run the entire case study. If for
example 30 runs were performed and the total execution time
was just one hour, then it is rather difficult to justify why a
higher number of runs was not used to gain statistical power,
lower p-values, and narrow the confidence interval of effect
size estimates.

e For detecting statistical differences, use the non-parametric
Mann-Whitney U-test for interval-scale results and the Fisher
exact test for dichotomous results (i.e., in the cases of cen-
sored data as discussed in Section 5). For the former case,
in R you can use the function “w=wilcox.test(X,Y)” where
X and Y are the data sets with the observations of the two
compared randomized algorithms. If you are comparing a
randomized algorithm against a deterministic one, use
“w=wilcox.test(X,mu=D)”, where D is the resulting mea-
sure of the deterministic algorithm. When we have number
of successes a for the first algorithm and b for the second,
you can use “f=fisher.test(m)”, where m is a matrix derived
in this way: “m =matrix(c(a,n-a,b,n-b),2,2)”. A p = 0.5
could be added to each cell of the matrix to handle the zero
occurrence cases.

e Report all the obtained p-values, whether they are smaller
than o or not, and not just whether differences are significant.

e Always report standardized effect size measures. For di-
chotomous results, the odds ratio 1/ (and its confidence inter-
val) is automatically calculated with “f=fisher.test(m)”. For
interval-scale results and the A1z effect size, the rank sum
R used in Equation 1 can be calculated with
“Rl1=sum(rank(c(X,Y))[seq_along(X)])”. It is also strongly
advised to report effect size confidence intervals (but the sup-
port for Am is unfortunately limited). This is in fact a much
easier to use substitute to p-values for decision making where
potential benefits can be compared to costs while accounting
for uncertainty.

e To help the meta-analyses of published results across studies,
report means and standard deviations (so that effect sizes in
the d family can be used). For dichotomous experiments,
always report the values a and b (so that other types of effect
sizes can be computed [24]).

e If space permits, provide full statistics for the collected data,
as for example mean, median, variance, min/max values, skew-
ness, median and absolute deviation. Box-plots are also use-
ful to visualize them.

e When analyzing more than two randomized algorithms, use
pairwise comparisons followed by pairwise statistical tests
and effect size measures.

10. THREATS TO VALIDITY

The systematic review in Section 2 is based on only three sources,
from which only 16 out of 135 papers were selected. A larger re-
view might lead to different results, although we can safely argue
that TSE and ICSE are representative of research trends in software
engineering. Furthermore, that review is only used as a motivation



for providing practical guidelines, and its results are in line with
other larger systematic reviews [3, 28]. Last, papers sometimes
lack precision and interpretation errors are always possible.

As already discussed in Section 9, our practical guidelines may
not be applicable to all contexts. Therefore, in every specific con-
text, one should always carefully assess them. For some specific
cases, other statistical procedures could be preferable, especially
when only few runs are possible.

11. CONCLUSION

In this paper we report on a systematic review to evaluate how
the results of randomized algorithms in software engineering are
analyzed. This type of algorithms (e.g., Genetic Algorithms) are
widely used to address many software engineering problems, such
as test case selection. Similar to previous systematic reviews on re-
lated topics [3, 28], we conclude that the use of rigorous statistical
methodologies are somehow lacking when investigating random-
ized algorithms in software engineering.

To cope with this problem, we provide practical guidelines tar-
geting researchers in software engineering. In contrast to other
guidelines in the literature for other scientific fields (e.g., [46] and
[29]), the guidelines in this paper are tailored to the specific proper-
ties of randomized algorithms when applied to software engineer-
ing problems. The use of these guidelines is important in order to
develop a reliable body of empirical results over time, which enable
comparisons across studies and which will converge towards gen-
eralizable results of practical importance. Otherwise, as in many
other aspects of software engineering, unreliable results would pre-
vent effective technology transfer and would limit the impact of
research on practice.
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