
CSE P 504
Advanced topics in Software Systems

Fall 2022

Course introduction

October 03, 2022

Today

● Course overview
● What is Software Engineering
● Static vs. dynamic program analysis
● Small-group brainstorming:

software testing and debugging challenges

Course overview

The CSE P 504 team
Instructor
● René Just
● Office: CSE2 338
● Office hours: After class and by appointment
● rjust@cs.washington.edu

Teaching assistant
● Hannah Potter
● Office: TBD
● Office hours: by appointment
● hkpotter@cs.washington.edu

mailto:rjust@cs.washington.edu
mailto:hkpotter@cs.washington.edu

Logistics

● CSE2 G10, Mon, 6:30pm – 9:20pm.

● Lectures, discussions, and in-class exercises.

● Course material, schedule, etc. on website:
https://homes.cs.washington.edu/~rjust/courses/CSEP504

● Submission of assignments via Canvas:
https://canvas.uw.edu

https://homes.cs.washington.edu/~rjust/courses/CSEP504
https://canvas.uw.edu

Course overview: the big picture
● 10/03: Course introduction

● 10/10: Best practices and version control

● 10/17: Coverage-based testing

● 10/24: Mutation-based testing

● 10/31: Delta debugging

● 11/07: Invariants and partial oracles

● 11/14: Statistical fault localization

● 11/21: Static analysis

● 11/28: Abstract interpretation

● 12/05: Formal methods

Each class meeting has two parts: lecture and in-class activity.

Course overview: the big picture
● 10/03: Course introduction

● 10/10: Best practices and version control

● 10/17: Coverage-based testing

● 10/24: Mutation-based testing

● 10/31: Delta debugging

● 11/07: Invariants and partial oracles

● 11/14: Statistical fault localization

● 11/21: Static analysis

● 11/28: Abstract interpretation

● 12/05: Formal methods

HW 1

In-class exercise

In-class exercise

In-class exercise

In-class exercise

In-class exercise

In-class exercise

Happy Thanksgiving

HW 2

In-class exercise

Questions?

Course overview: in-class exercises

In-class exercises (graded activities) have two parts
1. In-class part: Small-group work on a problem set
2. Take-home part: Reflection and submission of answers

What if I can’t attend a class meeting?
● A Zoom option is available for all in-class exercises to

facilitate small-group work for remote participants.

● Submissions for in-class exercises are due at the end of the
week.

Course overview: grading

● 20% Homeworks
● 70% In-class exercises (7 sessions)
● 10% Participation

Questions?

Course overview: expectations

● Programming (and OO) experience.
● Read a few research papers.
● Engage in discussions.
● Have fun!

What is Software Engineering

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Testing and debugging a software system?

● Deploying and running
a software system?

● Empirically evaluating a software system?

● Writing (design) docs?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Testing and debugging a software system?

● Deploying and running
a software system?

● Empirically evaluating a software system?

● Writing (design) docs?

All of the above and much more!

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming
○ Software testing and debugging
○ Refactoring

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming Just one out of many important tasks!
○ Software testing and debugging
○ Refactoring

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming
○ Software testing and debugging
○ Refactoring

Program analysis is a crucial task in Software Engineering!

The Role of Software Engineering in Research

Experimental infrastructure is software, too!

Example (automated debugging)
● 150 configurations, 1000+ benchmarks
● 1-85 hours per execution
● 200,000+ CPU hours (~23 CPU years)

1 0.34 0.81

2 0.52 0.32

3 0.21 0.53

4 0.81 0.22

...

Infrastructure

Design space
exploration

Static vs. dynamic program analysis

What is program analysis?

● (Automatically) analyze the behavior of a program
○ optimize the program or
○ check program’s behavior (against its specification)

● Concerned with properties such as
○ Correctness
○ Safety
○ Liveness
○ Performance

● Can be static or dynamic (or both), which affects
○ Computational cost
○ Accuracy and precision

Why do we need program analysis?

Why do we need program analysis?

● ~15 million lines of code

Let’s say 50 lines per page (0.05 mm)
● 300000 pages
● 15 m (49 ft)

Why do we need program analysis?

Reliability is critical for many programs
● Increase confidence in program correctness
● Understand the program’s behavior
● Prove properties about the program

Why do we need program analysis?

A first example: code review

Different types of reviews
● Code/design review
● Informal walkthrough
● Formal inspection

A requirement for many (safety-critical) systems.

A first example: code review

Different types of reviews
● Code/design review
● Informal walkthrough
● Formal inspection

Let’s do an informal code review.
Anything that could be improved in this (Java) code?

double foo(double[] d) {
 int n = d.length;
 double s = 0;
 int i = 0;
 while (i<n)
 s = s + d[i];
 i = i + 1;
 double a = s / n;
 return a;
}

A first example: code review

Different types of reviews
● Code/design review
● Informal walkthrough
● Formal inspection

Now, is anything wrong with that code?

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

A first example: code review

Different types of reviews
● Code/design review
● Informal walkthrough
● Formal inspection

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

static OSStatus
SSLVerifySignedServerKeyExchange(...) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify returned %d\n", (int)err);
goto fail;

}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Anything wrong with that code?

static OSStatus
SSLVerifySignedServerKeyExchange(...) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify returned %d\n", (int)err);
goto fail;

}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Anything wrong with that code?

Apple’s “goto fail” bug:
a security vulnerability for 2 years!

Code review

Pros
● Can be applied at any step in the development process
● Does not require an executable program
● Improves confidence and communication

Cons
● Time-consuming
● Mostly informal
● Not replicable

Terminology and important concepts

Let’s define the following terms,
in the context of program analysis:
1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision (and conservative analysis)

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

G
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

TP: True positive
FP: False positive

FN: False negative
TN: True negative

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Precision:
|TP|

|TP| + |FP|

Recall:
|TP|

|TP| + |FN|

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Soundness:
no FNs

Completeness:
no FPs

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Abstract domain

even, odd

Concrete domain

0, 1, 2, 3, 4, …

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision

An analysis/measure can be precise and inaccurate at the same time!

Concrete domain

0, 1, 2, 3, 4, …

Abstract domain

even, odd

Accuracy

Precision

Accuracy

Precision

Static vs. dynamic analysis

What are the key differences?

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

[y:=2, x:=2]

y = x++

???

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

<y is even, x is even>

y = x++

???

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

<y is even, x is even>

y = x++

<y is even, x is odd>

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

<y is prime, x is prime>

y = x++

???

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

<y is prime, x is prime>

y = x++

<y is prime, x is anything>

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

<y is prime, x is prime>

y = x++

<y is prime, x is even>

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

The statement
“f returns a non-negative value”
is weaker (but easier to establish)
than the statement
“f returns the absolute value of
its argument”.

Static vs. dynamic analysis: overview
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.

Static analysis: examples

Type checking (also compiler optimizations)

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0.0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

Static analysis: examples

Rule/pattern-based analysis (PMD, Findbugs, etc.).

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

Static analysis: examples

Control-flow and data-flow analysis

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

What is the control flow graph
(CFG) for this avg function?

Static analysis: examples

Control-flow and data-flow analysis

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

Entry
point

n = nums.length

sum = 0

i = 0

i < n

Normal
exit

true

false

sum = sum + nums[i]

i = i + 1

avg = sum / n

return avg

Static analysis: examples

Control-flow and data-flow analysis

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

Entry
point

n = nums.length

sum = 0

i = 0

i < n

Normal
exit

true

false

sum = sum + nums[i]

i = i + 1

avg = sum / n

return avg

Can we conclude that
this is an infinite loop?

Why or why not?

Dynamic analysis: examples

Software testing (also monitoring and profiling)

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

A test for the avg function:

@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

Static vs. dynamic analysis

What are the key challenges?

Static vs. dynamic analysis: challenges

Static analysis: choose good abstractions
● Chosen abstraction determines cost (time and space)
● Chosen abstraction determines precision (what information is lost)

Dynamic analysis: choose good representatives (tests)
● Chosen tests determine cost (time and space)
● Chosen tests determine accuracy (what executions are never seen)

Static vs. dynamic analysis: summary

Static analysis

● Abstract domain
● Conservative due to abstraction
● Sound due to conservatism
● Slow if precise

Dynamic analysis

● Concrete execution
● Precise no approximation
● Unsound, does not generalize
● Slow if exhaustive

Small-group brainstorming:
software testing and debugging challenges

