CSE P 504

Advanced topics in Software Systems
Fall 2022

Course introduction

October 03, 2022

Today

Course overview

What is Software Engineering

Static vs. dynamic program analysis
Small-group brainstorming:

software testing and debugging challenges

Course overview

The CSE P 504 team

Instructor

e René Just

e Office: CSE2 338

e Office hours: After class and by appointment
e rjust@cs.washington.edu

Teaching assistant

Hannah Potter

Office: TBD

Office hours: by appointment
hkpotter@cs.washington.edu

mailto:rjust@cs.washington.edu
mailto:hkpotter@cs.washington.edu

Logistics

e CSE2 G10, Mon, 6:30pm — 9:20pm.
e |ectures, discussions, and in-class exercises.

e (Course material, schedule, etc. on website:
https://homes.cs.washington.edu/~rjust/courses/CSEP504

e Submission of assignments via Canvas:
https://canvas.uw.edu

https://homes.cs.washington.edu/~rjust/courses/CSEP504
https://canvas.uw.edu

Course overview: the big picture

e 10/03: Course introduction

e 10/10: Best practices and version control
e 10/17: Coverage-based testing

e 10/24: Mutation-based testing

e 10/31: Delta debugging

e 11/07: Invariants and partial oracles

o 11/14: Statistical fault localization

e 11/21: Static analysis

e 11/28: Abstract interpretation

e 12/05: Formal methods

Each class meeting has two parts: lecture and in-class activity.

Course overview: the big picture

e 10/03: Course introduction HW 1

e 10/10: Best practices and version control In-class exercise

e 10/17: Coverage-based testing In-class exercise

e 10/24: Mutation-based testing In-class exercise

e 10/31: Delta debugging In-class exercise

e 11/07: Invariants and partial oracles In-class exercise

o 11/14: Statistical fault localization In-class exercise

e 11/21: Static analysis Happy Thanksgiving
e 11/28: Abstract interpretation HW 2

e 12/05: Formal methods In-class exercise

Questions?

Course overview: in-class exercises

In-class exercises (graded activities) have two parts
1. In-class part: Small-group work on a problem set
2. Take-home part: Reflection and submission of answers

What if | can’t attend a class meeting?
e A Zoom option is available for all in-class exercises to
facilitate small-group work for remote participants.

e Submissions for in-class exercises are due at the end of the
week.

Course overview: grading

e 20% Homeworks
e 70% In-class exercises (7 sessions)
e 10% Participation

Questions?

Course overview: expectations

Programming (and OQO) experience.
Read a few research papers.
Engage in discussions.

Have fun!

What is Software Engineering

What is Software Engineering? f?

e Developing in an IDE
and software ecosystem?

e Testing and debugging a software system? #%

e Deploying and running
a software system?

e Empirically evaluating a software system?

W

e Writing (design) docs?

What is Software Engineering? f?
A o) _1:

e Developing in an IDE
and software ecosystem?

e Testing and debugging a software system? #%

e Deploying and running
a software system?

e Empirically evaluating a software system?

W

e Writing (design) docs?

All of the above and much more!

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

e Common Software Engineering tasks include:

Requirements engineering
Specification writing and documentation
Software architecture and design
Programming

Software testing and debugging
Refactoring

o O O O O O

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

e Common Software Engineering tasks include:

Requirements engineering

Specification writing and documentation

Software architecture and design

Programming Just one out of many important tasks!
Software testing and debugging

Refactoring

o O O O O O

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

e Common Software Engineering tasks include:

Requirements engineering
Specification writing and documentation
Software architecture and design
Programming

Software testing and debugging
Refactoring

O O O O O O

Program analysis is a crucial task in Software Engineering!

The Role of Software Engineering in Research

Experimental infrastructure is software, too!

e Infrastructure
1 —> Design space .

’ ~— exploration

Example (automated debugging)

e 150 configurations, 1000+ benchmarks
e 1-85 hours per execution

e 200,000+ CPU hours (~23 CPU years)

AW IDN | -

0.34
0.52
0.21

0.81

0.81
0.32
0.53

0.22

Static vs. dynamic program analysis

What is program analysis?

e (Automatically) analyze the behavior of a program
o optimize the program or
o check program’s behavior (against its specification)
e Concerned with properties such as
o Correctness
o Safety
o Liveness
o Performance
e (Can be static or dynamic (or both), which affects
o Computational cost
o Accuracy and precision

Why do we need program analysis?

Why do we need program analysis?

e ~15 million lines of code

Let’s say 50 lines per page (0.05 mm) |
e 300000 pages o L5
o 15m (49 ft)

Why do we need program analysis?

Why do we need program analysis?

Reliability is critical for many programs

e Increase confidence in program correctness
e Understand the program’s behavior

e Prove properties about the program

A first example: code review

Different types of reviews
e Code/design review
e Informal walkthrough
e Formal inspection

A requirement for many (safety-critical) systems.

A first example: code review

Different types of reviews
e Code/design review
e Informal walkthrough
e Formal inspection

double foo(double[] d) {
int n = d.length;
double s = 0;
int 1 = 9;
while (i<n)
s =s + d[i];
i=14+ 1;
double a = s / n;
return a;

}

N

Let’'s do an informal code review.
Anything that could be improved in this (Java) code?

A first example: code review

Different types of reviews double avg(double[] nums) {
- - int n = nums.length;
e (Code/design review double sum - ©;
e Informal walkthrough

: : int 1 = 0;
e Formal inspection

while (i<n)
sum = sum + nums[i];
i=1+1;

double avg = sum / n;

itur\—navg;/
b

Now, is anything wrong with that code?

A first example: code review

Different types of reviews double avg(double[] nums) {
' ' int n = .length;
e Code/design review int n = nums.leng

double sum = ©;
e Informal walkthrough
int 1 = 0;

e Formal inspection —while (i<n)
_ i=1+ 1;

double avg = sum / n;

itur\—navg;/
}

static OSStatus
SSLVerifySignedServerKeyExchange(...) {
OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1 final(&hashCtx, &hashOut)) != 0)
goto fail;
err = sslIRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: ssIRawVerify returned %d\n", (int)err);
goto fail;
}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Anything wrong with that code?

static OSStatus
SSLVerifySignedServerKeyExchange(...) {
OSStatus err;

Apple’s “goto fail” bug:
a security vulnerabillity for 2 years!

if ((err = SSLHashSHA1. te(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1 final(&hashCtx, &hashOut)) != 0)
goto fail;
err = sslIRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: ssIRawVerify returned %d\n", (int)err);
goto fail;
}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCitx);
return err;

Anything wrong with that code?

Code review

Pros

e (Can be applied at any step in the development process
e Does not require an executable program

e Improves confidence and communication

Cons

e Time-consuming
e Mostly informal
e Not replicable

Terminology and important concepts

Let’s define the following terms,

in the context of program analysis:

1. Precision vs. Recall (and FP/FN/TP/TN)

2. Soundness vs. Completeness

3. Concrete domain vs. Abstract domain

4. Accuracy vs. Precision (and conservative analysis)

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

Analysis result
Pos Neg

Y]
o)
73

Ground Truth

P4
®
«Q

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

Analysis result

Pos Neg
£ Pos TP FN
=
o
c
o
¢ Neg FP TN

TN: True negative

TP: True positive
FP: False positive

FN: False negative}

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

(Recall:

Analysis result |TP|
Pos Neg |ITP| + |FN|

£ Pos TP f\

=

o

c

o

¢ Neg FP TN

Precision:
|TP|

|TP| + |FP]|

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

Analysis result

Pos Neg
£ Pos TP FN
=
o
c
o
¢ Neg FP TN

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

Soundness: J

Analysis result
y no FNs

Pos Neg

TP

(F2) |

&
(%))

Ground Truth

P4
®
«Q

Completeness:
no FPs

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Concrete domain Abstract domain

0,1,2, 3,4, ... even, odd

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision
Concrete domain Abstract domain
<«——— Precision - » Precision
0,1, 2, 3,4, ... even, odd
T T
Accuracy Accuracy

An analysis/measure can be precise and inaccurate at the same time!

Static vs. dynamic analysis

x

¥

What are the key differences?

Static vs. dynamic analysis: overview

Static analysis

Reason about the program without executing it.
Build an abstraction of run-time states.

Reason over abstract domain.

Prove a property of the program.

Sound* but conservative.

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states.

| [y:=2, x:=2]
Reason over abstract domain.
Prove a property of the program. y = X++
Sound* but conservative. 555

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states.
Reason over abstract domain.

Prove a property of the program. y = X++
Sound* but conservative.

[y:=2, x:=2]

[y:=2, x:=3]

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states.

Reason over abstract domain.

Prove a property of the program. y = X++
Sound” but conservative. 550

<y Is even, x isS even>

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis
e Reason about the program without executing it.

Build an abstraction of run-time states.
Reason over abstract domain.

Prove a property of the program. y = X++
Sound* but conservative.

<y Is even, x isS even>

<y is even, x is odd>

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis

Reason about the program without executing it.

Build an abstraction of run-time states.

Reason over abstract domain.

Prove a property of the program. y = X++
Sound” but conservative. 550

<y Is prime, X is prime>

\

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis
e Reason about the program without executing it.

e Build an abstraction of run-time states. o . N\
_ <y IS prime, X IS prime>

e Reason over abstract domain.

e Prove a property of the program. y = X++

L

Sound* but conservative.

<y is prime, X is anything>

/

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis
e Reason about the program without executing it.

e Build an abstraction of run-time states. o . N\
_ <y IS prime, X IS prime>

e Reason over abstract domain.

e Prove a property of the program. y = X++

L

Sound* but conservative.

<y is prime, X Is even>

/

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis
e Reason about the program without executing it.

Build an abstraction of run-time states.
Reason over abstract domain.

Prove a property of the program.
Sound* but conservative.

The statement

than the statement

its argument”.

“f returns a non-negative value”
is weaker (but easier to establish)

“f returns the absolute value of

* Some static analyses are unsound; dynamic analyses can be sound.

Static vs. dynamic analysis: overview

Static analysis
e Reason about the program without executing it.
Build an abstraction of run-time states.
Reason over abstract domain.
Prove a property of the program.
Sound* but conservative.

Dynamic analysis
e Reason about the program based on some program executions.
e Observe concrete behavior at run time.
e Improve confidence in correctness.
e Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.

Static analysis: examples

Type checking (also compiler optimizations)

double avg(double[] nums) { double avg(double[] nums) {
int n = nums.length; int n = nums.length;
double sum = ©; double sum = ©;
while (i<n) { while (i<n) {
sum = sum + nums[i]; sum = sum + nums[i];
i=1+ 1; i=1+ 1;
} }
double avg = sum / n; double avg = sum / n;
itur_ny ituy
} }

Static analysis: examples

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 =

Cwhile G

sum = sum + nums[i];
i=1+ 1;

double avg = sum / n;

Rule/pattern-based analysis (PMD, Findbugs, etc.).

\\:jijij_iiii///////”’—__—
}

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 =

<:QE£1G (1<n{::::>

sum = sum + nums[i];
i=1+ 1;
}
double avg =

sum / n;

\\\iiijii_izfi////////”'—__——
}

Static analysis: examples

Control-flow and data-flow analysis

double avg(double[] nums) { What is the control flow graph

int n = nums.length; : S,
double sum = ©; (CFG) for this avg function”

int 1 = 0;
while (i<n)
sum = sum + nums[i];

i=1+ 1;

double avg = sum / n;

~\\iiiiii_iiﬁi////////”’——_——
}

Static analysis: examples

Control-flow and data-flow analysis m

double avg(double[] nums) { n = nums.length
int n = nums.length; sum=0
double sum = ©; i=0

int 1 = 0; i=i+1

while (i<n)
sum = sum + nums[i];

'

avg=sum/n

i=1+ 1;

sum = sum + numsi]

y

double avg = sum / n; return avg

itury
}

Static analysis: examples

Control-flow and data-flow analysis m

double avg(double[] nums) { n = nums.length
int n = nums.length; sum=0
double sum = ©; i=0

int 1 = 0;

i=i+1

<:”’Wﬁffe (i<n) .

'

—_sum = sum + nums[i];
i=1+ 1;

avg=sum/n

y

double avg = sum / n;

return avg

return avg; Can we conclude that
}\/ this is an infinite loop?

Why or why not?

Dynamic analysis: examples

Software testing (also monitoring and profiling)

double avg(double[] nums) { | A test for the avg function:
int n = nums.length;

double sum = 0; QTest
public void testAvg() {
int 1 = 0; double nums =
while (i<n) new double[]{1.0, 2.0, 3.0});
sum = sum + nums[i]; double actual = Math.avg (nums);
i=1+ 1; double expected = 2.0;

assertEquals (expected, actual, EPS) ;
double avg = sum / n; }

~\\iiiiii_iiﬁi’///////”’—__——
}

Static vs. dynamic analysis

x

¥

What are the key challenges?

Static vs. dynamic analysis: challenges

Static analysis: choose good abstractions

e Chosen abstraction determines cost (time and space)
e Chosen abstraction determines precision (what information is lost)

Dynamic analysis: choose good representatives (tests)
e Chosen tests determine cost (time and space)
e Chosen tests determine accuracy (what executions are never seen)

Static vs. dynamic analysis: summary

Static analysis

Abstract domain

Conservative due to abstraction
Sound due to conservatism
Slow if precise

Dynamic analysis

Concrete execution

Precise no approximation
Unsound, does not generalize
Slow if exhaustive

Small-group brainstorming:
software testing and debugging challenges

