
CSE P 504
Advanced topics in Software Systems

Fall 2022

Best practices and version control

October 10, 2022

Today

● Logistics

● Best practices (or how to avoid bugs)
● Version control with git

● In-class exercise 1

Logistics

● Course material, schedule, etc. on website:
https://homes.cs.washington.edu/~rjust/courses/CSEP504

● Submission of assignments via Canvas:
https://canvas.uw.edu

● Discussions on Slack:
https://csep504.slack.com

● Poll everywhere:
https://pollev.com/renejust859

Having trouble accessing any of those – let us know!

Logistics: in-class exercises

How to get the most out of these exercises?

1. Prepare
● Follow set-up instructions: ready to go on Monday.

2. Participate
● Work as a team: focus on problem solving and discussions.

3. Reflect
● Revisit notes;
● Submit deliverables;
● Identify and raise open questions.

Logistics: in-class exercises

How to get the most out of these exercises?

1. Prepare
● Follow set-up instructions: ready to go on Monday.

2. Participate
● Work as a team: focus on problem solving and discussions.

3. Reflect
● Revisit notes;
● Submit deliverables;
● Identify and raise open questions.

In-class due dates – Friday vs. Sunday?

Best practices

How to avoid bugs in your code? How to avoid bugs in your code?

It’s super simple...don’t introduce them during coding!

“Everybody makes mistakes except for me…

But then, there is just one of me.”

How to avoid bugs in your code?

A more realistic approach: 3 steps

1. Make certain bugs impossible by design
2. Correctness: get it right the first time
3. Bug visibility

How to avoid bugs in your code?

A more realistic approach: 3 steps

1. Make certain bugs impossible by design
a. Programming language

i. Ever had a use-after free bug in a garbage-collected language?
ii. Ever had an assignment bug (String to Integer) in a statically typed language?

(Even stronger guarantees with custom types and pluggable type systems.)
b. Libraries and protocols

i. TCP vs. UDP
ii. No overflows in BigInteger

How to avoid bugs in your code?

A more realistic approach: 3 steps

1. Make certain bugs impossible by design
a. Programming language
b. Libraries and protocols

2. Correctness: get it right the first time
a. A program without a spec is bug free
b. Keep it simple, modular, and testable
c. Defensive programming and conventions (discipline)

How to avoid bugs in your code?

A more realistic approach: 3 steps

1. Make certain bugs impossible by design
a. Programming language
b. Libraries and protocols

2. Correctness: get it right the first time
a. A program without a spec is bug free
b. Keep it simple, modular, and testable
c. Defensive programming and conventions (discipline)

3. Bug visibility
a. Assertions (pre/post conditions)
b. (Regression) testing
c. Fail fast

Quiz: setup and goals
● 3-4 students per team
● 4 code snippets
● 2 rounds

○ First round
■ For each code snippet, decide whether it represents good or bad practice.
■ Goal: discuss and reach consensus on good or bad practice.

○ Second round (known “solutions”)
■ For each code snippet, try to understand why it is good or bad practice.
■ Goal: come up with an explanation or a counter argument.

Round 1: good or bad?
Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Snippet 2: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Snippet 3: good or bad?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Snippet 4: good or bad?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Round 2: why is it good or bad?

My take on this

● Snippet 1: bad

● Snippet 2: good

● Snippet 3: bad

● Snippet 4: good

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Null references...the billion dollar mistake.

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

File[] files = getAllLogs();
for (File f : files) {

…
} Don’t return null; return an empty array instead.

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

No diagnostic information.

Snippet 2: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Snippet 2: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Type safety using an enum; throws an exception for
unexpected cases (e.g., future extensions of PaymentType).

Snippet 3: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Snippet 3: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

What does the last call return?

Snippet 3: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

Avoid method overloading, which is statically resolved.
Autoboxing/unboxing adds additional confusion.

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Snippet 4: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Snippet 4: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Good encapsulation; immutable object.

Version control

Why use version control?

11:51pm

Why use version control?

11:51pm 11:57pm

Why use version control?

Just kidding... this is far more realistic.

Version control
Version control records changes to a set of files over time.

This makes it easy to review or obtain a specific version (later).

Who uses version control?

Example application domains
● Software development
● Research (infrastructure and data)
● Applications (e.g., (cloud-based) word processors)

● One central repository.

● All users commit their changes
to a central repository.

● Each user has a working copy.
As soon as they commit, the
repository gets updated.

● Examples: SVN (Subversion), CVS.

Centralized version control Distributed version control

● Multiple copies of a repository.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless pulled from another repository.

● Examples: Git, Hg (Mercurial).

Version control with Git
(aka the best thing since sliced bread)

● “I see Subversion as being the most pointless project ever started”

● " ‘what would CVS never ever do’-kind of approach”

A little quiz

Branch vs. Clone vs. Fork
Branches

● One main development branch
(main, master, trunk, etc.).

● Adding a new feature, fixing a bug,
etc.: create a new branch -- a
parallel line of development.

● Lightweight branching (branch).

● Heavyweight branching (clone).

● Forking (clone + metadata).

Branches

● One main development branch
(main, master, trunk, etc.).

● Adding a new feature, fixing a bug,
etc.: create a new branch -- a
parallel line of development.

● Lightweight branching (branch).

● Heavyweight branching (clone).

● Forking (clone + metadata).

Branch and clone are common version control commands;
forking is a concept used by GitHub etc.

Conflicts

Conflicts

● Conflicts arise when two users change the same line
(or two adjacent lines) of a file.

● When a conflict arises, the last committer needs to resolve it.

How to avoid merge conflicts?

Merge vs. Rebase
(vs. Interactive Rebase)

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs. Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

When (not) to use rebase?
What are pros and cons?

Interactive Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (reword)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Change commit message

Interactive Rebase (reword)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Squash commits
into a single commit

Interactive Rebase (squash)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash & merge)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Squash & merge on GitHub Interactive Rebase (squash & rebase)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Rebase: a powerful tool, but …

● Results in a sequential commit history.
● Interactive rebasing often used to squash commits.
● Changes the commit history!

Do not rebase public branches
with a force-push!

Rebase: a powerful tool, but …

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Git concepts and terminology
Motivating Example: What is this Git command?

NAME
 git-______ - ______ file contents to the index
SYNOPSIS
 git ______ [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically ______s the
current content of existing paths as a whole, but with some options it can also
be used to ______ content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Motivating Example: What is this Git command?

NAME
 git-add - Adds file contents to the index
SYNOPSIS
 git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: vocabulary

● index: staging area (located .git/index)
● content: git tracks what is in a file, not the file itself
● tree: git's representation of a file system
● working tree: tree representing the local working copy
● staged: ready to be committed
● commit: a snapshot of the working tree (a database entry)
● ref: pointer to a commit object
● branch: just a (special) ref; semantically: represents a line of dev
● HEAD: a ref pointing to the working tree

Git: concepts and terminology

In-class exercise 1

