
CSE P 504
Advanced topics in Software Systems

Fall 2022

Invariants and partial test oracles

November 07, 2022

Course overview: the big picture
● 10/03: Course introduction

● 10/10: Best practices and version control

● 10/17: Coverage-based testing

● 10/24: Mutation-based testing

● 10/31: Delta debugging

● 11/07: Invariants and partial oracles

● 11/14: Statistical fault localization

● 11/21: Static analysis

● 11/28: Abstract interpretation

● 12/05: Formal methods

HW 1

In-class exercise

In-class exercise

In-class exercise

In-class exercise

In-class exercise

In-class exercise

Happy Thanksgiving

HW 2

In-class exercise

Reasoning about programs

Reasoning about programs
Use cases
● Testing: increase confidence in correctness
● Verification: prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ a happens before b

● Debugging: understand why code is incorrect

Reasoning about programs
Use cases
● Testing: increase confidence in correctness
● Verification: prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ a happens before b

● Debugging: understand why code is incorrect

Approaches
● Testing
● Abstract interpretation
● Theorem proving
● Delta debugging
● Slicing
● ...

Forward vs. backward reasoning

Forward reasoning
● Knowing a fact that is true before execution.
● Reasoning about what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Forward vs. backward reasoning

Forward reasoning
● Knowing a fact that is true before execution.
● Reasoning about what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Backward reasoning
● Knowing a fact that is true after execution.
● Reasoning about what must be true before execution.
● Given a postcondition, what precondition(s) must hold?

What are the pros and cons for each approach?

Forward vs. backward reasoning

Forward reasoning
● More intuitive for most people
● Helps understand what will happen (simulates the code)
● Introduces facts that may be irrelevant to the goal
● Set of current facts may get large
● Takes longer to realize that the task is hopeless

Backward reasoning
● Usually more helpful
● Helps understand what should happen
● Given a specific goal, indicates how to achieve it
● Given an error, gives a test case that exposes it

Pre/Post-conditions and Invariants

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

Pre-conditions define execution validity. Post-conditions and loop
invariants define expected properties of a correct implementation,
given a valid execution.

Pre-conditions and post-conditions

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

What are pre-conditions
and post-conditions of

this method (at the entry
and exit points)?

Exit point

Entry point

Pre-conditions and post-conditions

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

Pre-conditions
● nums is not null
● nums.length > 0

Post-conditions
● nums has not changed
● n > 0

● sum >= 0

● return value >= 0
● ...

(Loop) invariants

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

Does this loop terminate?
What are pre-conditions,

post-conditions,
and loop invariants?

(Loop) invariants

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

Explicitly stating invariants
is hard -- reasoning about
inferred variants might be

easier.

Daikon live example

(https://plse.cs.washington.edu/daikon/download/doc/daikon/Example-usa
ge.html#Detecting-invariants-in-Java-programs)

Daikon: general workflow

Log-based model inference

Beschastnikh et al., Synoptic: Studying Logged Behavior with Inferred Models; Inferring Models of Concurrent Systems from Logs of their Behavior with CSight

Partial test oracles,
Property-based testing
Metamorphic testing*

*Chen et al. coined the term metamorphic testing in 1998, but the key idea was first described by Ammann and Knight as data diversity in 1988.

Partial test oracles

Partial test oracle
● Necessary (but not sufficient) conditions
● Example: abs(x) >= 0

Property-based testing

Partial test oracle
● Necessary (but not sufficient) conditions
● Example: abs(x) >= 0

Property-based testing
● Check property (necessary condition) that must hold for any input,

which requires knowledge about the system

● Commonly used with random input generation

How is property-based testing different from testing with input-output
pairs and how is it different from fuzzing?

Property-based testing

Partial test oracle
● Necessary (but not sufficient) conditions
● Example: abs(x) >= 0

Property-based testing
● Check property (necessary condition) that must hold for any input,

which requires knowledge about the system

● Commonly used with random input generation

● Contrast: testing with input-output pairs usually checks for
sufficient conditions for a (small) subset of all possible inputs

● Contrast: fuzzing is usually a black-box approach that checks for a
simple property (“should not crash”)

Data diversity and metamorphic testing

Simple case: related inputs with identical outcomes
● Expected output for a given input is unknown
● Two related inputs must result in the same output
● Example: abs(x) == abs(-x)

Data diversity and metamorphic testing

Simple case: related inputs with identical outcomes
● Expected output for a given input is unknown
● Two related inputs must result in the same output
● Example: abs(x) == abs(-x)

Generalization: related inputs and related outputs
● Input i1 yields (unknown) o1 (initial input)

● Ri: i1 i2 (follow-up input)

● Ro: o1 o2 (necessary condition)

Metamorphic testing: a first example

Metamorphic testing: a first example Discrete wavelet transformation

Discrete wavelet transformation Discrete wavelet transformation

DWT

DWT

A concrete SUT: jpeg2000 encoder

DWTDWT

Metamorphic testing: three requirements

MT requires
1. A set of initial inputs (or a generator)
2. A relation Ri: generates follow-up inputs
3. A relation Ro: necessary correctness condition

Metamorphic testing: Input generation Metamorphic testing: relations Ri and Ro

???

Metamorphic testing: relations Ri and Ro Metamorphic testing: Relations

1. Ri: Add a constant offset to all color values
Ro: ???

??????

Metamorphic testing: Relations

1. Ri: Add a constant offset to all color values
Ro: Only the DC component must change

Metamorphic testing: Relations

1. Ri: Add a constant offset to all color values
Ro: Only the DC component must change

2. Ri: Invert the color values
Ro: The color values of the output must be inverted

Metamorphic testing: Relations

1. Ri: Add a constant offset to all color values
Ro: Only the DC component must change

2. Ri: Invert the color values
Ro: The color values of the output must be inverted

3. Ri: Transpose the input image
Ro: The output components must be transposed

Metamorphic testing: Relations

1. Ri: Add a constant offset to all color values
Ro: Only the DC component must change

2. Ri: Invert the color values
Ro: The color values of the output must be inverted

3. Ri: Transpose the input image
Ro: The output components must be transposed

4. Ri: Enlarge the input image (“zero-padding”)
Ro: The output components must be shifted

Metamorphic testing: Relations

It turns out that MR compositions are effective

Commutative

Time-invariant

1. Ri: Add a constant offset to all color values
Ro: Only the DC component must change

2. Ri: Invert the color values
Ro: The color values of the output must be inverted

3. Ri: Transpose the input image
Ro: The output components must be transposed

4. Ri: Enlarge the input image (“zero-padding”)
Ro: The output components must be shifted

Metamorphic testing: effectiveness

Putting it all together

1. (Random) input generation
2. Metamorphic testing: follow-up inputs and partial oracles
3. Delta debugging: Minimize bug-exposing inputs
4. Mutation analysis: assess the effectiveness of relations

Examples:
● GraphicsFuzz
● Testing ML-based systems

