
CSE P 504
Advanced topics in Software Systems

Fall 2022

Static Analysis

November 21, 2022

● Recap: statistical fault localization
● Static Analysis

○ Motivation

○ Examples

○ Intro to Abstract Interpretation

Today

Recap: statistical fault localization Fault
localization
technique

Program Statement ranking

Recap: statistical fault localization

Test suite

Failing
tests

Passing
tests

double avg(double[] nums) {

 int n = nums.length;

 double sum = 0;

 for(int i=0; i<n; ++i) {

 sum -= nums[i];

 }

 return sum / n;

}

double avg(double[] nums) {

 int n = nums.length;

 double sum = 0;

 for(int i=0; i<n; ++i) {

 sum -= nums[i];

 }

 return sum / n;

}

Most
suspicious

Least
suspicious

Recap: statistical fault localization

Jones et al., Visualization of test information to assist fault localization, ICSE’02 GZoltar

Recap: statistical fault localization

Developer in the loop
● Which granularity is most useful?

○ file level
○ method level
○ statement level

● What context do you need to reason about?
○ a file
○ a method
○ a statement

Recap: statistical fault localization

Developer in the loop
● Which granularity is most useful?

○ file level
○ method level
○ statement level

● What context do you need to reason about?
○ a file
○ a method
○ a statement

● Processing FL output
○ How useful is color coding (heatmap) vs. ranking?
○ How realistic is “sequential debugging”?

Static Analysis

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

[y:=2, x:=2]

y = x++

???

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=even, x:=even]

y = x++

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=even, x:=even]

y = x++

???

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=even, x:=even]

y = x++

[y:=even, x:=odd]

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=prime, x:=prime]

y = x++

???

Static vs. dynamic analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=prime, x:=prime]

y = x++

[y:=prime, x:=anything]

Static vs. dynamic analysis

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Precise but unsound
● Slow if exhaustive

Static vs. dynamic analysis

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Precise but unsound
● Slow if exhaustive

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

What possible value(s) does getValue() return?

Abstract domainConcrete domain

Static vs. dynamic analysis

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Precise but unsound
● Slow if exhaustive

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

What possible value(s) does getValue() return?

Abstract domain

even, odd, anything

Concrete domain

0, 2, 4, 6, 8, 10, ...

Terminology and important concepts

Recall the following terms:
1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Accuracy vs. Precision

G
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Abstract domain

even, odd, anything

Concrete domain

0, 2, 4, 6, 8, 10, ...

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

vs.

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

G
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Precision:
|TP|

|TP| + |FP|

Recall:
|TP|

|TP| + |FN|

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

TP FN

FP TNG
ro

un
d

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Soundness:
no FNs

Completeness:
no FPs

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Accuracy vs. Precision

Abstract domain

even, odd, anything

Concrete domain

0, 2, 4, 6, 8, 10, ...

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Accuracy vs. Precision

Abstract domain

even, odd, anything

Concrete domain

0, 2, 4, 6, 8, 10, ...

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

Accuracy

Precision

Accuracy

Precision

Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Accuracy vs. Precision

An analysis/measure can be precise and inaccurate at the same time!

Abstract domain

even, odd, anything

Concrete domain

0, 2, 4, 6, 8, 10, ...

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

Accuracy

Precision

Accuracy

Precision

Compiler checks and optimizations
● Liveness analysis (register reallocation)
● Reachability analysis (dead code elimination)
● Code motion (while(cond){x = comp(); ...})

Static analysis: applications

Static analysis: code examples

public class Liveness {
 public void liveness() {
 int a;
 if (alwaysTrue()) {
 a = 1;
 }
 System.out.println(a);
 }
}

Liveness
public void deadCode() {

 return;

 System.out.println("Here!");
}

Reachability

Common static analyses

Live examples
● Definitive assignment
● Dead code
● Linter warnings

Challenges to adopting static analysis

● Not integrated into the developer’s workflow.
● Reported issues are not actionable.
● Developers do not trust the results (FPs).
● Fixing an issue is too expensive or risky.
● Developers do not understand the reported issues.
● Issues theoretically possible but don’t manifest in practice.

“Produce less than 10% effective false positives. Developers should
feel the check is pointing out an actual issue at least 90% of the time.”

“Lessons from Building Static Analysis Tools at Google”, CACM 2018

Effective false positive

● We consider an issue to be an “effective false positive” if
developers did not take positive action after seeing the issue.

● If an analysis incorrectly reports an issue, but developers
make the fix anyway to improve code readability or
maintainability, that is not an effective false positive.

● If an analysis reports an actual fault, but the developer did
not understand the fault and therefore took no action, that is
an effective false positive.

“Lessons from Building Static Analysis Tools at Google”, CACM 2018

Effective false positive: example (mutation testing)

Petrovic et al., ICSTW’18

Effective false positive: discussion

● We consider an issue to be an “effective false positive” if
developers did not take positive action after seeing the issue.

● If an analysis incorrectly reports an issue, but developers
make the fix anyway to improve code readability or
maintainability, that is not an effective false positive.

● If an analysis reports an actual fault, but the developer did
not understand the fault and therefore took no action, that is
an effective false positive.

Do you agree with this characterization?
Is effective false positive rate an adequate measure?

Abstract Interpretation

Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
 x = x + 1;
}

…

A

B

C

Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
 x = x + 1;
}

…

A

B

Abstract interpretation sacrifices completeness (precision)

C

A first example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

Are all statements necessary?

A first example: SSA form

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

x
1
 = 0;

y
1
 = read_even();

x
2
 = y

1
 + 1;

y
2
 = 2 * x

2
;

x
3
 = y

2
 - 2;

y
3
 = x

3
 / 2;

Program SSA form

X1 is never read.

A first example: one concrete execution

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution

A first example: symbolic reasoning

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

x
1
 = 0;

y
1
 = read_even();

x
2
 = y

1
 + 1;

y
2
 = 2 * x

2
;

x
3
 = y

2
 - 2;

y
3
 = x

3
 / 2;

Program SSA form

What facts can you deduce about y and x after execution?

A first example: symbolic reasoning

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

x
1
 = 0;

y
1
 = read_even();

x
2
 = y

1
 + 1;

y
2
 = 2 * x

2
;

x
3
 = y

2
 - 2;

y
3
 = x

3
 / 2;

Program

y3 = x3 / 2
y3 = (y2 - 2) / 2
y3 = (2 * x2 - 2) / 2
y3 = (2 * (y1 + 1) - 2) / 2
y3 = (2 * y1 + 2 - 2) / 2
y3 = y1
x3 = y1 * 2

SSA form

Symbolic reasoning shows simplification potential.

A first example: abstract interpretation

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)

{x=e; y=e}

{x=???; y=???}

What’s the abstract type of x and y after (abstract) execution?

A first example: “abstract execution”

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program + unk odd even

unk

odd

even

What’s the abstract type of x and y after (abstract) execution?

A first example: “abstract execution”

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program + unk odd even

unk unk unk unk

odd unk even odd

even unk odd even

What’s the abstract type of x and y after (abstract) execution?

A first example: abstract interpretation

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)

{x=e; y=e}

{x=???; y=???}

What’s the abstract type of x and y after (abstract) execution?

A first example: abstract interpretation

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)

{x=e; y=e}

{x=e; y=u}

Convince yourself that this is true.

A first example: abstract interpretation

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)

{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=u}

This result is accurate but imprecise.

A first example: abstract interpretation

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)

{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=u}

What abstract domain would allow us to conclude that y is even?

