
CSE P 504
Advanced topics in Software Systems

Fall 2022

Abstract Interpretation

November 28, 2022

Abstract interpretation
● Lattices
● Abstraction function
● Concretization function
● Transfer function (vs. lub vs. glb)
● Galois connection
● Exercise: concrete examples

Today

Abstract interpretation (intuition)

Abstract domain and abstraction function (intuition)

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program Abstract domain (even, odd, unk)
{x=e}
{x=e; y=e}

Transfer function (intuition)

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program + unk odd even

unk unk unk unk

odd unk even odd

even unk odd even

Transfer function corresponds to the “abstract execution” of +

Abstract interpretation (a bit more formal)

Set, semilattice, lattice

Set, semilattice, lattice
Set

Set, semilattice, lattice
Set
● unordered collection of distinct objects

1 4
3 2

Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set

1 4
3 2

Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

1 4
3 2

1

3

2

4

Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice

Meet semilattice

1 4
3 2

1

3

2

4

Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)

1 4
3 2

1

3

2

4

1

3

2

⟙

4

⟙

1

3

2

4

Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)

Lattice
● Both a join semilattice and a meet semilattice

1 4
3 2

1

3

2

4

1

3

2

⟙

4

⟙

1

3

2

4

⟙

1

3

2

4

⟙

Lattice: example

Abstract domain: even, odd, unknown, {}

⊤

Lattice: example

Abstract domain: even, odd, unknown (), {} ()

⊤

⊤

even odd

⊤

Lattice: example

Abstract domain: -, 0, +, unknown, {}

Lattice: example

Abstract domain: -, 0, +, unknown, {}

Abstraction function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

What is the abstraction (𝛂) of {4}?

Abstraction function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

𝛂

What is the abstraction (𝛂) of {8}?

Abstraction function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

What is the abstraction (𝛂) of {}?

𝛂

Abstraction function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

𝛂

Why do we need an abstraction function?

Concretization function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

𝛂

What is the concretization (𝛄) of ?⟙

Concretization function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

𝛂

What is the concretization (𝛄) of E ?

𝛄

Concretization function

Concrete (P(ℕ)) Abstract

⟙
E O

⟙

{..., 4, 6, 8, ...}

{}

{1} {4} {8}

𝛂

𝛄

𝛄

Transfer function

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Transfer function

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Transfer function

Abstraction function

Concretization function

Abstract interpretation: approximation

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Do both paths lead to the same abstract state?

Abstract interpretation: approximation

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Do both paths lead to the same concrete state?

Abstract interpretation: soundness example

x=16 16 / 2

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=816 / 2 8 / 2

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=816 / 2 x=48 / 2

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=816 / 2 x=48 / 2

Abstract domain: {odd, even2, even4, is2, unk}

x=even4

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / ???

Abstract domain: {odd, even2, even4, is2, unk}

x=48 / 2

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2

Abstract domain: {odd, even2, even4, is2, unk}

x=48 / 2

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2
x=even2

Abstract domain: {odd, even2, even4, is2, unk}

x=48 / 2

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2
x=even2

x=48 / 2

even2 / is2

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2
x=even2

x=48 / 2

even2 / is2
x=unk

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2
x=even2

x=48 / 2

even2 / is2
x=unk

Abstract domain: {odd, even2, even4, is2, unk}

Abstract interpretation: soundness example

x=16 x=8

x=even4

16 / 2

even4 / is2
x=even2

x=48 / 2

even2 / is2
x=unk

⨅| ⨅|

Abstract domain: {odd, even2, even4, is2, unk}

⨅|

Abstract interpretation: soundness

Concrete
state

Concrete
state

Abstract
state

⨅

Concrete exec

Abstract exec
|

Abstract
state

What properties must be satisfied by the
abstraction, concretization, and transfer functions?

Sound approximation: properties

Concrete (P(ℕ)) Abstract

⟙

E2

O

⟙ {2, 4, 6, ...}

{}

{1} {4} {8}

𝛂

𝛄

What properties must 𝛂 and 𝛄 satisfy?

E4

{4, 8, 12, ...}

Sound approximation: galois connection

Concrete (P(ℕ)) Abstract

Galois connection
● 𝛂: C -> A
● 𝛄: A -> C
● ∀c∈C: c < 𝛄(𝛂(c))

⟙

E2

O

⟙ {2, 4, 6, ...}

{}

{1} {4} {8}

𝛂

𝛄

E4

{4, 8, 12, ...}

Sound approximation: properties

Concrete (P(ℕ)) Abstract

⟙

E2

O

⟙ {2, 4, 6, ...}

{}

{1} {4} {8}

𝛂

𝛄

What properties must the transfer function(s) satisfy?

E4

{4, 8, 12, ...}
fA

>>1(E4) = E2fC
>>1(8) = 4

Sound approximation: consistency

Concrete (P(ℕ)) Abstract

Transfer function
● Consistent with concrete execution

○ c: concrete state; c’ = fC(c)
○ a: 𝛂(c)
○ a’ = fA(a)
○ c’’ = 𝛄(a’)
○ c’ < c’’

⟙

E2

O

⟙ {2, 4, 6, ...}

{}

{1} {4} {8}

𝛂

𝛄

E4

{4, 8, 12, ...}
fA

>>1(E4) = E2fC
>>1(8) = 4

Sound approximation: properties

Transfer function
● fA

+: A x A -> A
● 1
● 2

Lub
● lub: A x A -> A

+ E O T ...

E E O T

O O E T

T T T T

...

lub(E, O) = T
⟙

E O

⟙

What properties must the lub function satisfy?

Sound approximation: monotonicity

Transfer function
● fA

+: A x A -> A
● may not be monotone
● 2

Lub
● lub: A x A -> A
● must be monotone

+ E O T ...

E E O T

O O E T

T T T T

...

lub(E, O) = T
⟙

E O

⟙

Sound approximation: join (lub) vs. meet (glb)

Transfer function
● fA

+: A x A -> A
● may not be monotone
● 2

Lub
● lub: A x A -> A
● must be monotone

+ E O T ...

E E O T

O O E T

T T T T

...

lub(E, O) = T
⟙

E O

⟙

int x = even();

if (x < 10) {
 x = x + 1;
} else {
 x = x + 2;
}
print(x);

x = even();

x = x + 1; x = x + 2;

print(x);

x<10
true false

Small-group exercise
● Work through two examples:

○ Join vs. meet operation (f(int a, int b, int c): int)

○ Termination/fix point iteration

int x = 2;
while (x < 10) {
 x = x + 2;
}

if (cond) {
 x = a * b;
} else {
 x = a * c;
}
return(x);

Which parameters (a, b, c)
● will definitely be used?
● may be used?

(cond is independent of the parameters)

Is the value of x after the loop an even
number? Use an abstract domain with
{odd, 2, even2, and even4}

Small-group exercise
● Work through two examples:

○ Join vs. meet operation (f(int a, int b, int c): int)

○ Termination/fix point iteration

int x = 2;
while (x < 10) {
 x = x + 2;
}

if (cond) {
 x = a * b;
} else {
 x = a * c;
}
return(x);

Which parameters (a, b, c)
● will definitely be used?
● may be used?

(cond is independent of the parameters)

Is the value of x after the loop an even
number? Use an abstract domain with
{odd, 2, even2, and even4}

See Q&A write-up:
https://docs.google.com/document/d/1VEWmFlJVtD2F9ZkXIZ9xeOXGAtkRZATIX13wc1NYmtw

https://docs.google.com/document/d/1VEWmFlJVtD2F9ZkXIZ9xeOXGAtkRZATIX13wc1NYmtw/edit

CheckerFramework live demo

