CSE P 504

Advanced topics in Software Systems
Fall 2022
Formal methods
December 05, 2022

HW2

- Timing/structure
- Multiple constraints and considerations to balance
- No homework/in-class during Thanksgiving week
- No final exam but end-of-quarter grading pressure
- Two parts and partial overlap with in-class 7
- Part 2
- Simplified execution model:
- CF builds AST and CFG from source code
- CF traverses the AST and adds type annotations (abstract values)
- CF calls your implementation when it needs additional information
(it calls the transfer functions and the abstraction function)
- CF traverses the fully annotated AST and calls your implementation for error reporting

AST for: $y=1 /(x+0)$

BinaryOp (=)

Abstract interpretation Q\&A

- What remains unclear after consulting the readings, examples, and exercises?
- Any specific roadblocks?
- Any additional thoughts beyond lecture content and hw2?

Abstract interpretation: recap and Q\&A

A primer on solver-aided reasoning and verification

What is a SAT solver?

What is a SAT solver?

- Takes a formula (propositional logic) as input.
- Returns a model (an assignment that satisfies the formula).
$\left(\mathrm{X}_{1} \vee \mathrm{x} 2\right) \wedge(\neg \mathrm{x} 1 \vee \mathrm{x} 3) \wedge\left(\mathrm{X} 1 \vee \neg \mathrm{x}_{3}\right) \wedge(\neg \mathrm{x} 2 \vee \neg \mathrm{x})$

What is a SAT solver?

- Takes a formula (propositional logic) as input.
$\left(\mathrm{X}_{1} \vee \mathrm{x} 2\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{x} 3\right) \wedge\left(\mathrm{X}_{1} \vee \neg \mathrm{x}_{3}\right) \wedge\left(\neg \mathrm{x} 2 \vee \neg \mathrm{x}_{3}\right)$

What is Z 3 ?

- An SMT (Satisfiability Modulo Theories) solver.
- Uses a standard language (SMT-LIB).
- Print to the screen.
- Declare variables and functions.

What is Z 3 ?

- An SMT (Satisfiability Modulo Theories) solver.
- Uses a standard language (SMT-LIB).
- Print to the screen.
- Declare variables and functions.
- Define constraints.

What is $\mathbf{Z} 3$?

- An SMT (Satisfiability Modulo Theories) solver.
- Uses a standard language (SMT-LIB).
- Print to the screen.
- Declare variables and functions.
- Define constraints.
- Check satisfiability and obtain a model.

○ ...

```
(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)
```

This code is asking the question: Does an integer greater than 0 exist?

What is Z 3 ?

- An SMT (Satisfiability Modulo Theories) solver.
- Uses a standard language (SMT-LIB).
- Print to the screen.
- Declare variables and functions.
- Define constraints.
- Check satisfiability and obtain a model.

```
(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)
```

Which question does this code answer?

A first example

```
1 int simpleMath(int a, int b) {
    assert(b>0);
    if(a + b == a * b) {
        return 1;
    }
    return 0;
7}
```

Does this method ever return 1 ?

A first example

```
1 int simpleMath(int a, int b) {
assert(b>0);
    if(a + b == a * b) {
        return 1;
    }
    return 0;
7}
```

```
(declare-const a Int)
(declare-const b Int)
(assert (> b 0))
(assert (= (+ a b) (* a b)))
(check-sat)
(get-model)
```

Does this method ever return 1? Let's ask Z3...

A more complex example

```
1 int getNumber(int a, int b, int c) {
    if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
return 4;
```

8 \}

All of the following must be true:

- ! $(c==0)$
- ! $(c==4)$
- ! $(a+b<c)$
- $\quad(\mathrm{a}+\mathrm{b}>\mathrm{c})$
- $a^{*} b==$

A more complex example

```
int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
if (c==4) return 0;
if (a + b < c) return 1;
5 if (a + b > c) return 2;
if (a * b == c) return 3;
    return 4;
8}
```

Does this method ever return 3 ?
What constraints must be satisfied?

A more complex example

```
int getNumber(int a, int b, int c) {
    if (c==0) return 0;
    if (c==4) return 0;
    if (a + b < c) return 1;
    if (a + b > c) return 2;
    if (a * b == c) return 3;
    return 4;
8}
```

All of the following must be true:

- ! $(\mathrm{c}==0)$
- ! $(c==4)$
- ! $(a+b<c)$
- ! $(a+b>c)$
- $a^{*} b==c$
$(\mathrm{a}+\mathrm{b}==\mathrm{c}) \wedge(\mathrm{a} * \mathrm{~b}==\mathrm{c}) \wedge(\mathrm{c}!=0) \wedge(\mathrm{c}!=$ 4)

A more complex example

1 int getNumber(int a, int b, int $c)$ \{
2 if ($\mathrm{c}==0$) return 0 ;
3 if ($c==4$) return 0 ;
4 if (a + b < c) return 1;
5 if $(a+b>c)$ return 2;
if (a * b == c) return 3;
return 4;
8 \}

All of the following must be true:

- ! (c == 0)
- ! $(c==4)$
- ! $(\mathrm{a}+\mathrm{b}<\mathrm{c})$
- ! $(a+b>c)$
- $a^{*} b==c$

A more complex example

1 int getNumber(int a, int b, int $c)$ \{
if (c==0) return 0;
if ($\mathrm{c}==4$) return 0 ;
if (a + b < c) return 1;
if $(a+b>c)$ return 2 ;
if (a * b == c) return 3;
return 4;
8 \}

All of the following must be true:

- ! (c == 0)
- ! $(c==4)$
- ! $(a+b<c)$
- ! $(a+b>c)$
- $a^{*} b==c$

A more complex example

```
1 int getNumber(int a, int b, int c) {
    if (c==0) return 0;
    if (c==4) return 0;
4 if (a + b<c) return 1;
    if (a + b > c) return 2;
6 if (a * b == c) return 3;
    return 4;
```

8 \}

All of the following must be true:

- ! $(c==0)$
- ! $(c==4)$
- ! $(a+b<c)$
- ! $(a+b>c)$
- $\mathrm{a}^{*} \mathrm{~b}==\mathrm{c}$

A more complex example

```
int getNumber(int a, int b, int c)
    if (c==0) return 0;
    if (c==4) return 0;
    if (a + b < c) return 1;
    if (a + b > c) return 2;
    if (a * b == c) return 3;
    return 4;
8}
1 int getNumber(int \(a\), int \(b\), int \(c\) ) \{
if (c==0) return 0;
if ( \(\mathrm{c}==4\) ) return 0 ;
if ( \(a+b<c\) ) return 1;
if (a + b > c) return 2;
return 4;
8\}
```

All of the following must be true:

- ! $(c==0)$
- ! $(c==4)$
- ! $(a+b<c)$
- ! $(a+b>c)$
- $\mathrm{a}^{*} \mathrm{~b}==\mathrm{c}$

Z3 supports Bitvectors of arbitrary size.
Let's model Java ints (32 bits) and ask the same question..

Reasoning about program equivalence

```
1 int add1(int a, int b) {
2 return a + b;
3}
5 int add2(int a, int b) {
6 return a * b;
7}
```

Are these two methods semantically equivalent?

Reasoning about program equivalence

```
1 int add1(int a, int b) {
```

1 int add1(int a, int b) {
return a + b;
return a + b;
< 2
< 2
4
4
5 int add2(int a, int b) {
5 int add2(int a, int b) {
6 return a * b;
6 return a * b;
7}

```
7}
```


Yes, for $a=2$ and $b=2$.
What have we actually proven here?

Reasoning about program equivalence

```
1 int add1(int a, int b) {
return a + b;
3}
4
5 int add2(int a, int b) {
6 return a * b;
7}
```

Are these two methods semantically equivalent?

Reasoning about program equivalence

```
```

1 int add1(int a, int b) {

```
```

1 int add1(int a, int b) {
2 return a + b;
2 return a + b;
3}
3}
4
4
5 int add2(int a, int b) {
5 int add2(int a, int b) {
return a * b;
return a * b;
7}

```
```

7}

```
```

$\begin{aligned} & \text { (declare-const a Int) } \\ & \text { (declare-const b Int) } \end{aligned}$
(declare-const add1 Int) (declare-const add2 Int)
(assert (= add1 (+ a b))) (assert (= add2 (* a b))) (assert (not (= add1 add2)))
(check-sat) (get-model)

For universal claims, our goal is to prove the absence of counter examples (i.e., the defined constraints are unsat)!

Summary

- Solver-aided reasoning is used for testing and verification.

In-class 7: formal methods

- SMT solvers:
- Provide one solution, if one exists.
- Are commonly used to find counter-examples (or prove unsat).
- Support many theories that can model program semantics.
- Usually support a standard language (SMT-lib).
- The challenge is to model a problem as a constraint system.

A few examples:

- Statistical test selection
- Data-structure synthesis
- Program synthesis
- Many higher-level DSLs and language bindings exist.

