
CSE P 504
Advanced topics in Software Systems

Fall 2022

Formal methods

December 05, 2022

● Recap Abstract interpretation
● Formal methods

○ Primer on solver-aided reasoning
○ SMTLIB and Z3
○ Examples

Today

Logistics of HW2

● Timing/structure
○ Multiple constraints and considerations to balance

■ No homework/in-class during Thanksgiving week
■ No final exam but end-of-quarter grading pressure
■ Two parts and partial overlap with in-class 7

● Part 2
○ Simplified execution model:

■ CF builds AST and CFG from source code
■ CF traverses the AST and adds type annotations (abstract values)
■ CF calls your implementation when it needs additional information

(it calls the transfer functions and the abstraction function)
■ CF traverses the fully annotated AST and calls your implementation for error reporting

HW2

AST for: y = 1 / (x + 0)

BinaryOp (=)

Ident (y) BinaryOp (/)

BinaryOp (+)Literal (1)

Literal (0)Ident (x)

Abstract interpretation: recap and Q&A

● What remains unclear after consulting the readings,
examples, and exercises?

● Any specific roadblocks?

● Any additional thoughts beyond lecture content and hw2?

Abstract interpretation Q&A

A primer on solver-aided reasoning
and verification

What is a SAT solver? What is a SAT solver?

● Takes a formula (propositional logic) as input.

(X1 ∨ X2) ∧ (￢X1 ∨ X3) ∧ (X1 ∨ ￢X3) ∧ (￢X2 ∨ ￢X3)

What is a SAT solver?

● Takes a formula (propositional logic) as input.
● Returns a model (an assignment that satisfies the formula).

(X1 ∨ X2) ∧ (￢X1 ∨ X3) ∧ (X1 ∨ ￢X3) ∧ (￢X2 ∨ ￢X3)

X = {X1, X2, X3} = {T, F, T}

SAT solver

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.

(echo "Running Z3...")
(declare-const a Int)

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.
○ Define constraints.

(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.
○ Define constraints.
○ Check satisfiability and obtain a model.
○ ...

(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

Which question does this code answer?

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.
○ Define constraints.
○ Check satisfiability and obtain a model.
○ ...

(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

This code is asking the question:
Does an integer greater than 0 exist?

A first example

1 int simpleMath(int a, int b) {
2 assert(b>0);
3 if(a + b == a * b) {
4 return 1;
5 }
6 return 0;
7 }

Does this method ever return 1? Let’s ask Z3...

A first example

1 int simpleMath(int a, int b) {
2 assert(b>0);
3 if(a + b == a * b) {
4 return 1;
5 }
6 return 0;
7 }

Does this method ever return 1? Let’s ask Z3...

(declare-const a Int)
(declare-const b Int)

(assert (> b 0))
(assert (= (+ a b) (* a b)))

(check-sat)
(get-model)

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

Does this method ever return 3?
What constraints must be satisfied?

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

Does this method ever return 3?

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

(a + b == c) ∧ (a * b == c) ∧ (c != 0) ∧ (c !=
4)

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

(declare-const a Int)
(declare-const b Int)
(declare-const c Int)

(assert (not (= c 0)))
(assert (not (= c 4)))
(assert (not (< (+ a b) c)))
(assert (not (> (+ a b) c)))
(assert (= (* a b) c))

(check-sat)

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

Z3 supports Bitvectors of arbitrary size.
Let’s model Java ints (32 bits) and ask the same question...

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

(define-sort JInt () (_ BitVec 32))

(declare-const a JInt)
(declare-const b JInt)
(declare-const c JInt)

(assert (not (= c #x00000000)))
(assert (not (= c #x00000004)))
(assert (not (bvslt (bvadd a b) c)))
(assert (not (bvsgt (bvadd a b) c)))
(assert (= (bvmul a b) c))

(check-sat)
(get-model)

All of the following must
be true:

● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

Are these two methods semantically equivalent?

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

Are these two methods semantically equivalent?

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (= add1 add2))

(check-sat)
(get-model)

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (= add1 add2))

(check-sat)
(get-model)

Yes, for a=2 and b=2.
What have we actually proven here?

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

For universal claims, our goal is to prove the absence of
counter examples (i.e., the defined constraints are unsat)!

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (not (= add1 add2)))

(check-sat)
(get-model)

Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

● The challenge is to model a problem as a constraint system.
A few examples:
○ Statistical test selection
○ Data-structure synthesis
○ Program synthesis

● Many higher-level DSLs and language bindings exist.

In-class 7: formal methods

