CSE P 590

Building Data Analysis Pipelines

Fall 2024

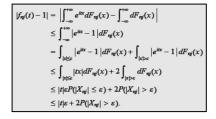
Statistical modeling

Today

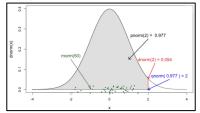
- Uniform vs. stratified sampling
- Statistical vs. practical significance
- Parametric vs non-parametric statistics
- CLT: Central Limit Theorem

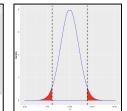
3 ways to understand and apply statistics

Math/Proofs



Simulations/Visualizations



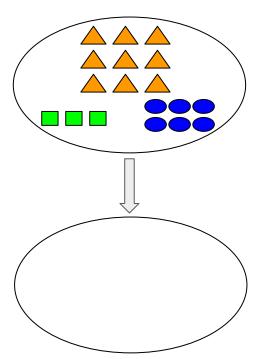


Decision diagrams

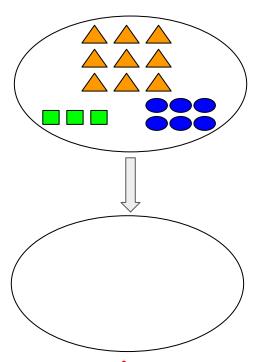
Uniform random vs. stratified random

Sampling: uniform random vs. stratified random

Uniform random



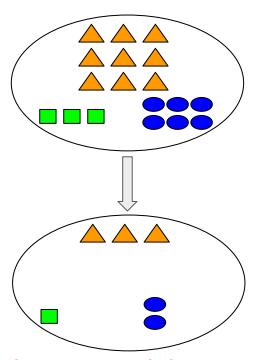
Stratified random



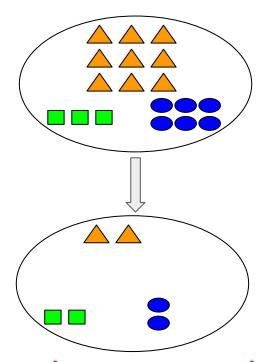
Sample six items: what are the expected outcomes?

Sampling: uniform random vs. stratified random

Uniform random



Stratified random



When would you use which sampling approach?

Statistical vs. practical significance

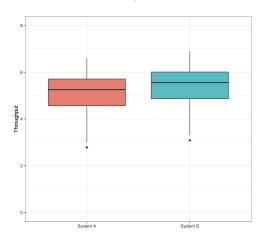
Hypothetical study on system performance

- Compare normalized throughput of two systems.
- Statistical test for the difference in mean throughput.

Hypothetical study on system performance

- Compare normalized throughput of two systems.
- Statistical test for the difference in mean throughput.

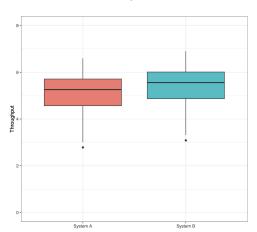
Scenario 1: p = 0.2137



Hypothetical study on system performance

- Compare normalized throughput of two systems.
- Statistical test for the difference in mean throughput.

Scenario 1: p = 0.2137

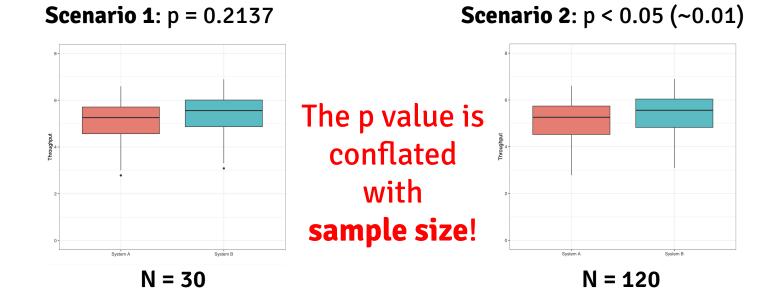


Scenario 2: p < 0.05 (~0.01)

What plot do you expect for Scenario 2?

Hypothetical study on system performance

- Compare normalized throughput of two systems.
- Statistical test for the difference in mean throughput.



A little quiz

- 1. What is the difference between statistical and practical significance?
- 2. What is the interpretation of the p value?
- 3. What is an effect size?

Small-group brainstorming

- Explain the answer to a group member.
- Come up with open questions.

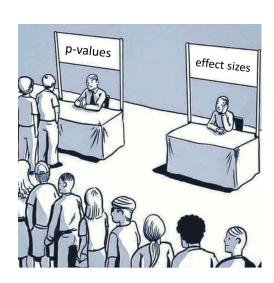
Statistical vs. practical significance

Statistical significance

- Is the difference due to chance?
- p value

Practical significance

- Does the difference matter in practice?
- Effect size



Effect size measures: examples

Correlation coefficients

- Pearson's r
- Kendall's tau (rank based)
- Spearman's rho (rank based)

"Raw" differences in central tendency

- Difference in means
- Difference in medians

Effect size measures: distinction

Distinction

- Parametric vs. non-parametric
 - Parametric: Pearson's r, Cohen's d
 - Non-parametric: Spearman's rho, A₁₂
- Standardized vs. non-standardized
 - Non-standardized: Difference in means Δ_{M}
 - \circ Standardized: Δ_{M} divided by the (pooled) standard deviation
- Variable types
 - Continuous: Cohen's d, A₁₂
 - Ordinal: A₁₂. Cliff's delta, Somers' D
 - Dichotomous: Odds ratio

Interpreting effect sizes

Example (Cohen's d):

- < 0.2: negligible
- >= 0.2: small
- >= 0.5: medium
- >= 0.8: large

Interpreting effect sizes: it's your job!

Example (Cohen's d):

- < 0.2: negligible
- >= 0.2: small
- >= 0.5: medium
- >= 0.8: large

(Standardized) effect sizes are a good starting point, but:

- Is an effect practically significant? Depends on context and domain!
- Raw differences may be easier to interpret (in context).

Generic effect sizes don't provide specific answers!

Contextualizing effect sizes

A statistically significant (large) effect may not be practically relevant:

- System response time: 20ms vs. 10ms
- Analysis runtime: 8h vs. 6h
- Top-5 vs. top-10 ranking
- Magnitude vs. location shift (superiority)

Parametric vs. non-parametric statistics

Parametric vs. non-parametric statistics

Parametric statistics

- Assumptions about the underlying distribution.
 - **Examples for common assumptions:**
 - Normal distribution.
 - Equal variance.
- Parametric because of the reliance on distribution parameters.
- Example: Student's t-test, Welch's t-test.

Non-parametric statistics

- Fewer assumptions about the underlying distribution.
- Rank-based -> more robust to outliers.
- Example: Mann Whitney u test (Wilcoxon rank sum test).

Two common statistical tests

Student's/Welch's t test

- Assumes normality
- Hypothesis is related to equality of mean(s).

Mann Whitney u test

- Agnostic to the underlying distribution
- Hypothesis is related to location shift.

A little quiz

- 1. Why not always use non-parametric statistics (fewer assumptions)?
- 2. Is the following statement true? "If a parametric test is not significant, then a non-parametric test cannot be significant either due to less statistical power."
- 3. What conclusions can you draw from the Cohen's d vs. A_{12} effect sizes?

My new awesome system

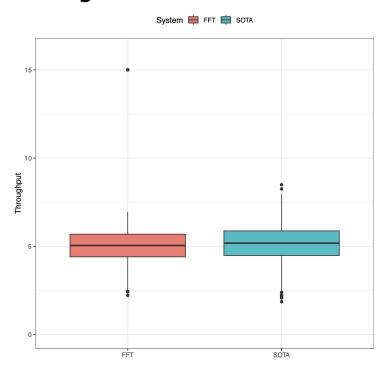
Evaluate system performance

- System: A new system (A) for fast file transfers: FFT.
- Goal: Compare the throughput against the state of the art (B): SOTA.

Results:

- Conclusion: FFT significantly outperforms SOTA:
 On average, its throughput of 5.29 files/ms -- a 2.3% increase over SOTA (5.17 files/ms).
- **Statistical significance:** The Mann Whitney U test showed that the difference is significant at the 0.05 significance level (p=0.0071).
- Practical significance: While a relative increase of 2.3% may seem modest, we argue that this is a big achievement, given how optimized the state of the art is.

My new awesome system



Does this change your perception of the results? What went wrong?

Statistical analysis: best practices

General advice:

- Be explicit about hypotheses and measures of interest (mean, median, location shift, proportions, etc.).
- Select appropriate statistical tests for a given hypothesis.
- Use data visualization to complement statistical tests.
- Be explicit about the effect size of interest.
- Contextualize effect size (requires domain knowledge).

Working with distributions in R

Let's take a big step back!

And answer questions like the following (over 2 lectures)

- What are PDF (probability density function) and CDF (cumulative distribution function)?
- Do I need to encode PDF and CDF (for common distributions) in R?
- What is the difference between population, sample, and sampling distribution?
- What is the CLT (Central Limit Theorem)?
- How is the CLT related to NHST?
- How is the CLT related to p values, confidence, and power?
- What are the downsides of NHST (frequentist vs. bayesian statistics)?

The normal distribution

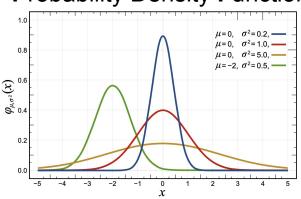
Characterized by

PDF: Probability Density Function

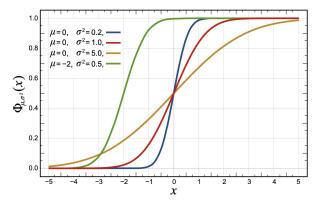
CDF: Cumulative Distribution Function

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Probability Density Function



Cumulative **D**istribution Function



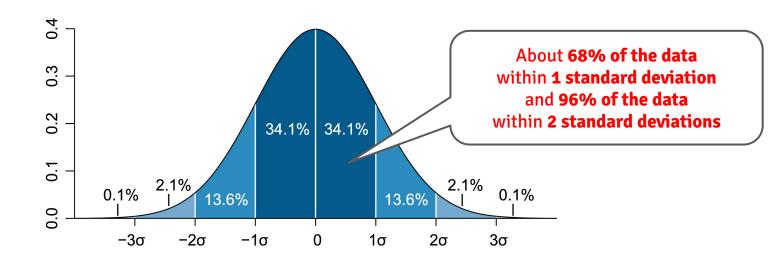
The normal distribution

Characterized by

PDF: Probability Density Function

CDF: Cumulative Distribution Function

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$



The normal distribution in R

Key functions

dnorm: PDF

pnorm: CDF

qnorm: quantile function

• quomi. quantile function

rnorm: randomly sample (n, mean, sd)

x) morm(50) pnorm(2) = 0.977

| Column | Column

Learn once and work with many common distributions (e.g., rnorm, rt, runif, rbinom)

Simulations and CLT: live demo

Statistical modeling: in-class exercise