CSE P 590

Building Data Analysis Pipelines

Fall 2024

Advanced statistical modeling

Homework 1: big picture

Today

- Homework 1: big picture
 - o A first end-to-end data analysis
 - Domain and data set
 - Modeling and statistical methods
- Live demo: Data modeling
- Homework 1: brainstorming

What is Defects4J?

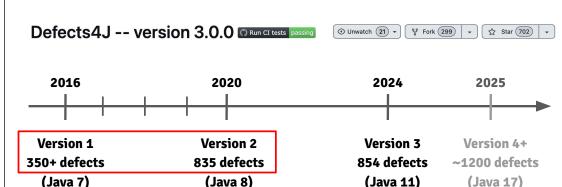
What is APR?

What is the data set?

What is Defects4J?

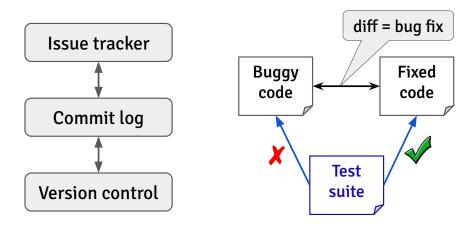
Database of Existing Faults to Enable Controlled Testing Studies For Java programs

1. Database 854 defects (17 software systems)


- Linked to issues in an issue tracker
- Reproducible with known triggering test(s)
- Isolated defects (excl. irrelevant changes)

Suitable for benchmarking testing/debugging approaches.

2. Supporting infrastructure


- Uniform interface to checkout, compile, and analyze defects
- Support for large-scale experimentation
- Defect-mining infrastructure plus guidelines and validation

Defects4J over time

Key focus of HW1: Differences between these versions.

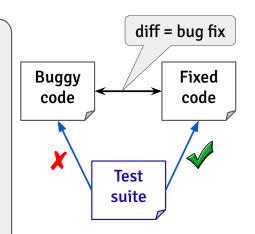

Building Defects4J: how hard can it be?

Building Defects4J: how hard can it be?

Real-world programs

- Complex build systems
- Build dependencies
- Broken and flaky tests
- Non-atomic commits

Automated defect mining is easy, but curation is hard!


Building Defects4J: benchmark curation

Curation

- Defect isolation: separate bug fix from features/refactorings
- Clean test suite: remove broken and flaky tests

Usability and experimental control

- Improve precision of bug (fix) location and complexity
- Reduce false-positives (triggering tests)

Benchmark curation: design considerations

Internal validity

External validity

Experimental control

Realism

Benchmarks

Real deployment -

What is Defects4J?

What is APR?

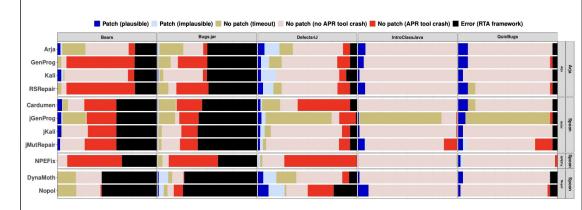
What is the data set?

APR: Automated Program Repair

Goal: patch software bugs automatically

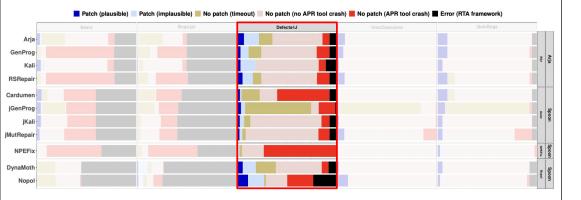
Generate-and-validate Approaches:

- Fault localization
- Mutation + fitness evaluation
- Patch validation (test executions)

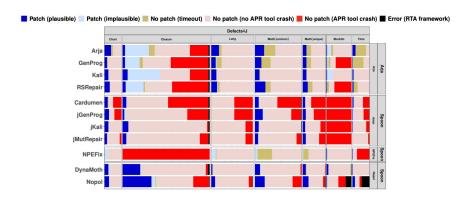

Many different approaches and evaluations (10+ years of research)

What is Defects4J?

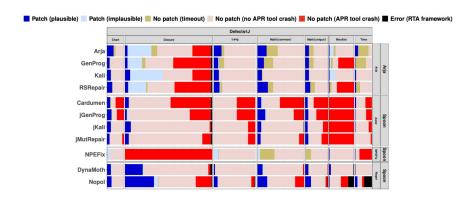
What is APR?


What is the data set?

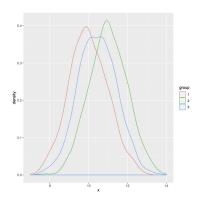
What do APR evaluations look like?

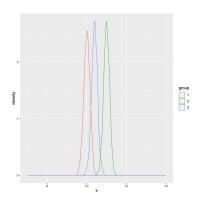

Data: Mapping of *Tool x Bug* to *Outcome*

What do APR evaluations look like?

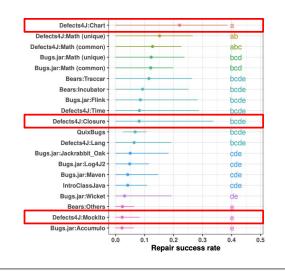

Let's drill deeper: benchmark composition

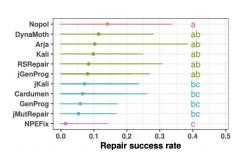
What do APR evaluations look like?

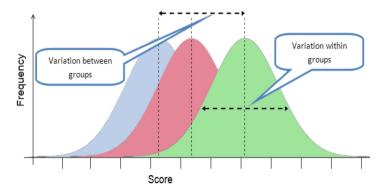

Data: Mapping of *Tool x Bug* to *Outcome – grouped by Project*


What do APR evaluations look like?

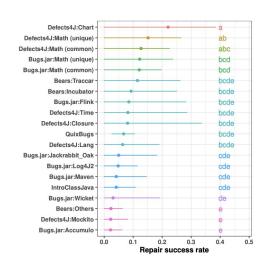
How would you (statistically) analyze the data?

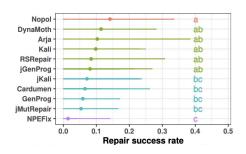

ANOVA: Motivation



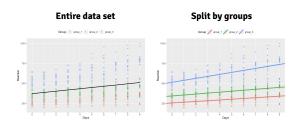

Are the group means significantly different? (Do all 3 group samples come from the same population?)

APR evaluation: one option (ANOVA and Tukey HSD)




ANOVA: ANalysis Of VAriance

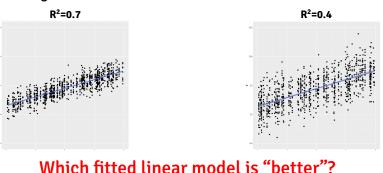
ANOVA: Is there a significant difference between some groups? Post-hoc: What groups are significantly different from one another?


ANOVA and Tukey HSD

APR evaluation: an alternative (LM) (Generalized) Linear Model

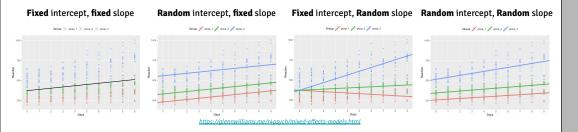
- Split the data set by groups.
- Model outcome as a function of variables of interest.

LM: Linear regression models


Assumptions

- Linearity
- Normality (residuals)
- Homoscedasticity (residuals)
- Independence (observations)
- Little to no multicollinearity (for inference).

LM: Linear regression models


Interpretation of results

- Model fit: goodness of fit (R²)
- Inference: significance of coefficients

APR evaluation: another alternative (GLMM) (Generalized) Linear Mixed Model

- Model fixed and random effects.
- Allow intercepts and/or slopes to vary.

Data modeling: live demo

Homework 1: brainstorming

HW1: An end-to-end data analysis

Goal

- Raise questions about terminology and concepts.
- Raise questions about the data set or data generation process.
- Raise questions about modeling challenges.

Set up

- Small groups (~6 students)
- Discuss and document open questions: https://tinyurl.com/abkwan7n