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Fall 2024

Advanced statistical modeling t,dyverse




Today

e Homework 1: big picture

o Afirst end-to-end data analysis
o Domain and data set
o Modeling and statistical methods

e Live demo: Data modeling
e Homework 1: brainstorming



Homework 1: big picture



What is Defects4J?



What is Defects4J?

Database of Existing Faults to Enable Controlled Testing Studies For Java programs

1. Database 854 defects (17 software systems)
e Linked toissues in an issue tracker
e Reproducible with known triggering test(s) [ Suitable for benchmarking }
e Isolated defects (excl. irrelevant changes) testing/debugging approaches.

2. Supporting infrastructure
e Uniform interface to checkout, compile, and analyze defects
e Support for large-scale experimentation
e Defect-mining infrastructure plus guidelines and validation



Defects4J over time
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Key focus of HW1: Differences between these versions.



Building Defects4J: how hard can it be?
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Building Defects4J: how hard can it be?

Real-world programs A = LA S
e Complex build systems Buggy Fixed
e Build dependencies code code g
e Broken and flaky tests
e Non-atomic commits X #
9 ) Test
suite

Automated defect mining is easy, but curation is hard!



Building Defects4J: benchmark curation

~N

/Curation ) diff = bug fix
e Defect isolation: separate bug
fix from features/refactorings Buggy Fixed
e Clean test suite: remove broken code code
and flaky tests 7

J

Usability and experimental control #
e Improve precision of bug (fix) X
location and complexity
e Reduce false-positives
(triggering tests)

Test
suite




Benchmark curation: design considerations

Internal validity External validity

Experimental control Realism

4= Benchmarks Real deployment mmp



What is APR?



APR: Automated Program Repair

Goal: patch software bugs automatically

[ Buggy f&

77X

@) ¢
[ )

Automatic *
patch generation

Generate-and-validate Approaches:

e Fault localization

e Mutation + fithess evaluation
e Patch validation (test executions)

[ Potential fix }

a4

Many different approaches and evaluations (10+ years of research)



What is the data set?



What do APR evaluations look like?
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Data: Mapping of Tool x Bug to Outcome




What do APR evaluations look like?
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Let’s drill deeper: benchmark composition

X 43dN
uoods uoodg




What do APR evaluations look like?
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Data: Mapping of Tool x Bug to Outcome - grouped by Project



What do APR evaluations look like?
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How would you (statistically) analyze the data?



APR evaluation: one option (ANOVA and Tukey HSD)
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ANOVA: Motivation

11
(I

Are the group means significantly different?
(Do all 3 group samples come from the same population?)



ANOVA: ANalysis Of VAriance

Variation within

groups

Variation between
groups

Frequency

Score

ANOVA: Is there a significant difference between some groups?
Post-hoc: What groups are significantly different from one another?



ANOVA and Tukey HSD
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APR evaluation: an alternative (LM)

(Generalized) Linear Model

e Split the data set by groups.
e Model outcome as a function of variables of interest.

Entire data set Split by groups

i 2 3 4 5 6 7 8 s



LM: Linear regression models

Assumptions

Linearity

Normality (residuals)

Homoscedasticity (residuals)

Independence (observations)

Little to no multicollinearity (for inference).



LM: Linear regression models

Interpretation of results
e Model fit: goodness of fit (R?)

e Inference: significance of coefficients
R32=0.7 R2=0.4

Which fitted linear model is “better”?



APR evaluation: another alternative (GLMM)

(Generalized) Linear Mixed Model
e Model fixed and random effects.
e Allow intercepts and/or slopes to vary.

Fixed intercept, fixed slope Random intercept, fixed slope  Fixed intercept, Random slope Random intercept, Random slope

3 i 5 7 8

ys Days
https://glennwilliams.me/r4psych/mixed-effects-models.html



https://glennwilliams.me/r4psych/mixed-effects-models.html

Data modeling: live demo



https://homes.cs.washington.edu/~rjust/courses/CSEP590/demos/

Homework 41: brainstorming



HW1: An end-to-end data analysis £

Goal
e Raise questions about terminology and concepts.
e Raise questions about the data set or data generation process.
e Raise questions about modeling challenges.

Set up
e Small groups (~6 students)
e Discuss and document open questions: https://tinyurl.com/abkwan7n



https://tinyurl.com/abkwan7n

