CSE P 590 Building Data Analysis Pipelines

Fall 2024

Advanced statistical modeling

Today

• Homework 1: big picture

- A first end-to-end data analysis
- Domain and data set
- Modeling and statistical methods
- Live demo: Data modeling
- Homework 1: brainstorming

Homework 1: big picture

What is Defects4J?

What is APR?

What is the data set?

What is Defects4J?

Database of Existing Faults to Enable Controlled Testing Studies For Java programs

- 1. Database 854 defects (17 software systems)
 - Linked to issues in an issue tracker
 - Reproducible with known triggering test(s)
 - Isolated defects (excl. irrelevant changes)

Suitable for benchmarking testing/debugging approaches.

- 2. Supporting infrastructure
 - Uniform interface to checkout, compile, and analyze defects
 - Support for large-scale experimentation
 - Defect-mining infrastructure plus guidelines and validation

Defects4J over time

Defects4J -- version 3.0.0 CR Run CI tests passing

 Output
 Openation
 Openation

-

Key focus of HW1: Differences between these versions.

Building Defects4J: how hard can it be?

Building Defects4J: how hard can it be?

Real-world programs

- Complex build systems
- Build dependencies
- Broken and flaky tests
- Non-atomic commits

Automated defect mining is easy, but curation is hard!

Building Defects4J: benchmark curation

Curation

- **Defect isolation**: separate bug fix from features/refactorings
- Clean test suite: remove broken and flaky tests

Usability and experimental control

- Improve precision of bug (fix) location and complexity
- Reduce false-positives (triggering tests)

Benchmark curation: design considerations

Internal validity

Experimental control

External validity

Realism

What is Defects4J?

What is APR?

What is the data set?

APR: Automated Program Repair

Goal: patch software bugs automatically

Generate-and-validate Approaches:

- Fault localization
- Mutation + fitness evaluation
- Patch validation (test executions)

Many different approaches and evaluations (10+ years of research)

What is Defects4J?

What is APR?

What is the data set?

Data: Mapping of *Tool x Bug* to *Outcome*

Let's drill deeper: benchmark composition

Data: Mapping of *Tool x Bug* to *Outcome – grouped by Project*

How would you (statistically) analyze the data?

APR evaluation: one option (ANOVA and Tukey HSD)

ANOVA: Motivation

Are the group means significantly different? (Do all 3 group samples come from the same population?)

ANOVA: ANalysis Of VAriance

ANOVA: Is there a significant difference between some groups? Post-hoc: What groups are significantly different from one another?

ANOVA and Tukey HSD

APR evaluation: an alternative (LM)

(Generalized) Linear Model

- Split the data set by groups.
- Model outcome as a function of variables of interest.

LM: Linear regression models

Assumptions

- Linearity
- Normality (residuals)
- Homoscedasticity (residuals)
- Independence (observations)
- Little to no multicollinearity (for inference).

LM: Linear regression models

Interpretation of results

- Model fit: goodness of fit (R²)
- Inference: significance of coefficients

Which fitted linear model is "better"?

APR evaluation: another alternative (GLMM)

(Generalized) Linear Mixed Model

- Model fixed and random effects.
- Allow intercepts and/or slopes to vary.

Data modeling: live demo

Homework 1: brainstorming

HW1: An end-to-end data analysis

Goal

- Raise questions about terminology and concepts.
- Raise questions about the data set or data generation process.
- Raise questions about modeling challenges.

Set up

- Small groups (~6 students)
- Discuss and document open questions: <u>https://tinyurl.com/abkwan7n</u>