CSE P 590

Building Data Analysis Pipelines

Fall 2024

Advanced statistical modeling t,dyverse

Today

e Homework 1: big picture

o Afirst end-to-end data analysis
o Domain and data set
o Modeling and statistical methods

e Live demo: Data modeling
e Homework 1: brainstorming

Homework 1: big picture

What is Defects4J?

What is Defects4J?

Database of Existing Faults to Enable Controlled Testing Studies For Java programs

1. Database 854 defects (17 software systems)
e Linked toissues in an issue tracker
e Reproducible with known triggering test(s) [Suitable for benchmarking }
e Isolated defects (excl. irrelevant changes) testing/debugging approaches.

2. Supporting infrastructure
e Uniform interface to checkout, compile, and analyze defects
e Support for large-scale experimentation
e Defect-mining infrastructure plus guidelines and validation

Defects4J over time

Defects4J -- version 3.0.0 GEEEEERE=) (O vmween @ -) (¥ roGo9) | - | [& serGo) | -)

2016 2020 2024 2025
| | | |] | I
L | | >
Version 1 Version 2 Version 3 Version &4+
350+ defects 835 defects 854 defects ~1200 defects
(Java 7) (Java 8) (Java 11) (Java 17)

Key focus of HW1: Differences between these versions.

Building Defects4J: how hard can it be?

diff = bug fix |

[Issue tracker] ’
I Buggy Fixed
code code

4

[Commit log]

! X </

Test
[Version control] suite

Building Defects4J: how hard can it be?

Real-world programs A = LA S
e Complex build systems Buggy Fixed
e Build dependencies code code g
e Broken and flaky tests
e Non-atomic commits X #
9) Test
suite

Automated defect mining is easy, but curation is hard!

Building Defects4J: benchmark curation

~N

/Curation) diff = bug fix
e Defect isolation: separate bug
fix from features/refactorings Buggy Fixed
e Clean test suite: remove broken code code
and flaky tests 7

J

Usability and experimental control #
e Improve precision of bug (fix) X
location and complexity
e Reduce false-positives
(triggering tests)

Test
suite

Benchmark curation: design considerations

Internal validity External validity

Experimental control Realism

4= Benchmarks Real deployment mmp

What is APR?

APR: Automated Program Repair

Goal: patch software bugs automatically

[Buggy f&

77X

@) ¢
[)

Automatic *
patch generation

Generate-and-validate Approaches:

e Fault localization

e Mutation + fithess evaluation
e Patch validation (test executions)

[Potential fix }

a4

Many different approaches and evaluations (10+ years of research)

What is the data set?

What do APR evaluations look like?

Arja
GenProg
Kali
RSRepair
Cardumen
jGenProg
jKali

jMutRepair
NPEFix

DynaMoth

Nopol

[l Patch (plausible) Patch (implausible) | No patch (timeout) No patch (no APR tool crash) [ll No patch (APR tool crash) [ll Error (RTA framework)

Bears h Bugs.jar] DefectsdJ “ IntroClassJava | QuixBugs
; :
qE
| | I
| i O
| } |
; | 1 i
| 1 i
| d I

Data: Mapping of Tool x Bug to Outcome

What do APR evaluations look like?

Arja
GenProg
Kali
RSRepair
Cardumen
jGenProg
jKali

jMutRepair
NPEFix

DynaMoth

Nopol

[l Patch (plausible) Patch (implausible) | No patch (timeout) No patch (no APR tool crash) [ll No patch (APR tool crash) [ll Error (RTA framework)

| DefectsdJ

|
i

]
T

Let’s drill deeper: benchmark composition

X 43dN
uoods uoodg

What do APR evaluations look like?

[l Patch (plausible) Patch (implausible) | No patch (timeout) No patch (no APR tool crash) [ll No patch (APR tool crash) [ll Error (RTA framework)

Arja
GenProg
Kali
RSRepair

Cardumen .
jGenProg .

Defects4J

Math(common) Mockito | Time

|

jKali

jMutRepair

NPEFix

DynaMoth

Nopol

Data: Mapping of Tool x Bug to Outcome - grouped by Project

What do APR evaluations look like?

[l Patch (plausible) Patch (implausible) | No patch (timeout) No patch (no APR tool crash) [ll No patch (APR tool crash) [ll Error (RTA framework)

1

Defects4J

Chart Closure ‘ ‘ Lang

Arja .
GenProg

Kali
RSRepair

Cardumen .I

£
;
i
-
d
f
i

iy
eliy

]
|
jMutRepair I

DynaMoth II
weoll O

|
| i
N,
I

|

jGenProg

uoodg

jKali

I
1l

oo mim

uoodg

How would you (statistically) analyze the data?

APR evaluation: one option (ANOVA and Tukey HSD)

Defects4J:Chart 4

Defects4J:Math (unique) - ® ab
Defects4J:Math (common) - ® abc
Bugs.jar:Math (unique) ° bed
Bugs.jar:Math (common) - ° bed
Bears:Traccar - ® bede
Bears:Incubator - © bede
Bugs.jar:Flink - ° bcde
Defects4J:Time o - bcde
Defects4J:Closure - * bede
QuixBugs —T— bede
Defects4J:Lang] ———&—— bede
Bugs.jar:Jackrabbit_Oakq ——&———— cde
Bugs.jar:Log4J2{ ——&—— cde
Bugs.jar:Mavenq{ —o— cde
IntroClassJava{ ——— cde
Bugs.jar:Wicketq| —¢———— ae
Bears:Others 1 —e—— e
Defects4J:Mockito{ —&— e
Bugs.jar:Accumuloq —&— e
0.0 0.1 0.2 0.3 0.4 05

Repair success rate

Nopol - g a
DynaMoth - ® ab
Arja - © ab
Kali - ® ab
RSRepair - * ab
jGenProg - & ab
jKali - be
Cardumen - bc
GenProg - & bc
jMutRepair{ —&——— bc

NPEFix+q -o— ¢

0.0 0.1 0.2 0.3 0.4 0.5

Repair success rate

ANOVA: Motivation

11
(I

Are the group means significantly different?
(Do all 3 group samples come from the same population?)

ANOVA: ANalysis Of VAriance

Variation within

groups

Variation between
groups

Frequency

Score

ANOVA: Is there a significant difference between some groups?
Post-hoc: What groups are significantly different from one another?

ANOVA and Tukey HSD

Defects4J:Chart -
Defects4J:Math (unique) -
Defects4J:Math (common) 1
Bugs.jar:Math (unique) -
Bugs.jar:Math (common)
Bears:Traccar A
Bears:Incubator -
Bugs.jar:Flink 4
Defects4J:Time -
Defects4J:Closure
QuixBugs 1
Defects4J:Lang A
Bugs.jar:Jackrabbit_Oak -
Bugs.jar:Log4J2
Bugs.jar:Maven -
IntroClassJava
Bugs.jar:Wicket -
Bears:Others A
Defects4J:Mockito -
Bugs.jar:Accumulo 1

° a
* ab
° abc
° bed
- bed
° bcde
- bede
® bede
® bcde
* bede
—T— bcde
———————— bede
— cde
= cde
—— cde
— cde
_— de
—— e
—e— &
—— [
0.0 0.1 0.2 0.3 0.4 0.5

Repair success rate

Nopol @ a
DynaMoth - * ab
Arja * ab
Kali - ® ab
RSRepair - = ab
jGenProg ° ab
jKali - s be
Cardumen - ® bc
GenProg o bc
jMutRepair{ ————— bc

NPEFix4 -=——— ¢

0.0 0.1 0.2 0.3 0.4 0.5

Repair success rate

APR evaluation: an alternative (LM)

(Generalized) Linear Model

e Split the data set by groups.
e Model outcome as a function of variables of interest.

Entire data set Split by groups

i 2 3 4 5 6 7 8 s

LM: Linear regression models

Assumptions

Linearity

Normality (residuals)

Homoscedasticity (residuals)

Independence (observations)

Little to no multicollinearity (for inference).

LM: Linear regression models

Interpretation of results
e Model fit: goodness of fit (R?)

e Inference: significance of coefficients
R32=0.7 R2=0.4

Which fitted linear model is “better”?

APR evaluation: another alternative (GLMM)

(Generalized) Linear Mixed Model
e Model fixed and random effects.
e Allow intercepts and/or slopes to vary.

Fixed intercept, fixed slope Random intercept, fixed slope Fixed intercept, Random slope Random intercept, Random slope

3 i 5 7 8

ys Days
https://glennwilliams.me/r4psych/mixed-effects-models.html

https://glennwilliams.me/r4psych/mixed-effects-models.html

Data modeling: live demo

https://homes.cs.washington.edu/~rjust/courses/CSEP590/demos/

Homework 41: brainstorming

HW1: An end-to-end data analysis £

Goal
e Raise questions about terminology and concepts.
e Raise questions about the data set or data generation process.
e Raise questions about modeling challenges.

Set up
e Small groups (~6 students)
e Discuss and document open questions: https://tinyurl.com/abkwan7n

https://tinyurl.com/abkwan7n

