CSE P 590

Building Data Analysis Pipelines

Fall 2024

Data visualization and reporting

Today

- Logistics and reflection
- Effective tables and visualizations
 - Tables vs. graphs
 - Effective tables
 - \circ Effective visualizations (ggplot2)
- HW2: Overview
- Tutorial: Quarto

Reflections on HW1

Logistics and reflection

HW1 in one picture: mostly type II fun

THEFUN SCALE NOT ALLOUTDOOR FUN IS CREATED EQUAL TYPEIL TYPEI TYPEIII FUN FUN FUN FUN TO DO HURTS A BIT TO DO NOT FUN TO DO FUN TO REMEMBER BUT FUN IN RETROSPECT NOT FUN IN RETROSPECT WANT TO KEEP GOING MOST FULFILLING IN BUT MAKES BACK FOR MORE THE LONG RUN REAT STORY Sweet spot for teaching

Course overview: the big picture

•	12/02: Big data	
•	11/25: Big data	<u> </u>
•	11/18: Data visualization and reporting	
•	11/11: No class	
•	11/04: Advanced statistical modeling	20
•	10/28: Statistical significance and power	-(3)
•	10/21: Statistical modeling	
•	10/14: Data wrangling	
•	10/07: Analysis design and validity	20
•	09/30: Course introduction	-(3)

Course overview: the big picture

 11/18: Data visualization and reporting 11/25: Big data 12/02: Big data 	HW 2 In-class exercise
11/18: Data visualization and reporting 11/25: Big data	HW 2 In-class exercise
11/18: Data visualization and reporting	HW 2
11/11: No class	
11/04: Advanced statistical modeling	HW 1
10/28: Statistical significance and power	In-class exercise
10/21: Statistical modeling	In-class exercise
10/14: Data wrangling	In-class exercise
10/07: Analysis design and validity	In-class exercise
09/30: Course introduction	
	 09/30: Course introduction 10/07: Analysis design and validity 10/14: Data wrangling 10/21: Statistical modeling 10/28: Statistical significance and power 11/04: Advanced statistical modeling

Tables vs. graphs

Effective tables

Effective tables: the run-time data set

variant,	naive,	caching,	forking,	run,	subject
11,	309.8,	157.6,	144.8,	1,	"tax"
12,	379.5,	237.4,	254.5,	1,	"tax"
13,	415.9,	225.9,	225.9,	1,	"tax"

- Recall the run-time data set
 - 3 subjects (tax, tictactoe, triangle)
 - 3 strategies (naive, caching, forking)
 - \circ 5 runs to account for the variation in run time

Goal: show run times and relative improvements in a table

TABLE I

Effective tables: layout

TABLE IRUN TIMES AND IMPROVEMENTS.

Subject	RT-naive	RT-cache	RT-fork	I-cache	I-fork
tax	504.11	247.01	195.42	51.02%	61.31%
tictactoe	17.44	16.32	15.43	6.31%	11.49%
triangle	3.13	2.79	1.67	10.91%	46.62%

- Recall the run-time data set
 - 3 subjects (tax, tictactoe, triangle)
 - 3 strategies (naive, caching, forking)
 - \circ 5 runs to account for the variation in run time

What are the pros/cons of Table I? How would you improve it?

Effective tables: layout

RUN TIMES AND IMPROVEMENTS. RT-naive RT-cache RT-fork I-cache Subject I-fork 504.11 247.01 195.42 51.02% 61.31% tax tictactoe 17.44 16.32 15.43 6.31% 11.49% 3.13 2.79 1.67 10.91% 46.62% triangle **Compare the two** w.r.t. readability, clarity, and TABLE II interpretability RUN TIMES AND IMPROVEMENTS FOR THE NAIVE, CACHING (CACHE), AND FORKING (FORK) STRATEGIES. RUN TIMES ARE GIVEN IN SECONDS AND AVERAGED OVER FIVE RUNS. Subject **Run times** Improvements naive cache fork cache fork (vs. naive) (vs. naive) Tax 504 247 195 51.0% 61.3% TicTacToe 17.4 16.3 15.4 6.31% 11.5% Triangle 3.13 2.79 1.67 10.9% 46.6%

Effective tables: content

Keep it simple

- Avoid mixing higher-is-better and lower-is-better numbers
- Allow for easy comparisons, primarily by row
- Be consistent about precision vs. significant digits
- Summarize the table (what is the bottom line?)

 TABLE II

 Run times and improvements for the naive, caching (cache),

 and forking (fork) strategies. Run times are given in seconds

 And averaged over five runs.

Subject	Run times			Improvements		
	naive	cache	fork	cache (vs. naive)	fork (vs. naive)	
Tax	504	247	195	51.0%	61.3%	
TicTacToe	17.4	16.3	15.4	6.31%	11.5%	
Triangle	3.13	2.79	1.67	10.9%	46.6%	

Effective tables: best practices

Do

- Make each table self-contained (content and caption)
- Use descriptive (hierarchical) headers
- Right align numbers
- Use meaningful totals or weighted averages
- Be consistent about precision vs. significant digits

Don't

- Don't use horizontal lines between related rows
- Don't use vertical lines between related columns

Effective tables: summaries

		Subject	LOC	Speed up
EST. — 1859 ELEV. — 8463 POP. — 118		Tax TicTacToe Triangle	8900 120 80	10.2% 54.2% 60.9%
TOTAL 10440		Average	3393	41.8%
Total	vs.	A	verag	e

What are the downsides of these summaries?

Effective graphs

4 beautiful graphs

- Small groups of 4-6 students
- 4 example graphs
- For each graph
 - Discuss pros and cons
 - Propose improvements

Example 1: bar charts

Truncated axes are misleading and not a proper way to "demonstrate" effect size!

Example 1: bar charts

Truncated axes are misleading and not a proper way to "demonstrate" effect size!

Example 2: histogram

Good visual summary of count data, but binning may be misleading. Kernel density overlay can provide information about adequate binning.

Example 2: histogram vs. density plot

Good visual summary of count data, but binning may be misleading.

Kernel density overlay can provide information about adequate binning.

Example 3: scatter plot

Good visual summary of point clouds, trends, and relationships. May obscure relevant trends (overlapping points). Hard to reason about density (without adding transparency).

Example 3: scatter plot vs. line plot

Good visual summary of point clouds, trends, and relationships. May obscure relevant trends (overlapping points). Hard to reason about density (without adding transparency).

Example 3: scatter plot vs. line plot

Good visual summary of point clouds, trends, and relationships. May obscure relevant trends (overlapping points). Hard to reason about density (without adding transparency).

Effective graphs: box plots vs. violin plots

Box plots:

- Good visual data summary
- Nicely complements hypothesis tests
- May be misleading for multimodal data
- May be misleading for small samples

Example 4: multi-plot visualization

Way too many details! The key trends and takeaways are obscured. Good for detailed results but not a final report.

Effective graphs: facet plots

Facet plots:

- Clean visualizations across multiple dimensions of interest
- Allows for comparisons within groups and across groups
- Complementary to other ggplot2 aesthetics (color, shape, etc.)
- Use ggplot's facet_grid for cross-product visualizations (formula syntax)

Effective graphs: reorder and/or flip axes

Reorder and/or flip axes:

- Reorder by mean/median or by groups of interest etc.
- Flip axes for readability if appropriate
- Favor short labels over rotated labels

Effective graphs: best practices

Do

- Use ggplot2!
- Make each plot self-contained (content and caption)
- Relate tables and graphs to tell a consistent story
- By default put the DV on the vertical axis
- Reduce complexity with facet plots

Don't

- Don't use multiple, unrelated axes
- Don't connect unrelated data points (choose an appropriate graph instead)

Let's consider the following reporting

	Accidental	Suicide	Homicide	Heart- related	Canc
% deaths per cause	19.5%	6.8%	6.0%	17.4%	23.4
Blues	9.2%	2.0%	3.5%	28.0%	24.2
Jazz	10.6%	2.7%	1.9%	20.7%	30.6
Country	15.8%	4.7%	1.6%	23.5%	25.1
Gospel	13.3%	0.9%	3.6%	18.5%	23.0
R&B	11.5%	1.6%	5.0%	23.2%	26.8
Рор	19.0%	6.4%	2.9%	16.4%	26.7
Folk	15.9%	5.5%	4.4%	15.3%	32.3
World music	12.7%	3.4%	9.6%	17.8%	19.9
Rock	24.4%	7.2%	3.6%	15.4%	24.7
Electronic	16.7%	5.0%	10.0%	15.0%	25.0
Punk	30.0%	11.0%	8.2%	12.6%	18.3
Metal	36.2%	19.3%	5.9%	11.0%	14.1
Rap	15.9%	6.2%	51.0%	6.9%	7.6
Нір Нор	18.3%	7.4%	51.5%	6.1%	6.19
Red: significantly above the Blue: above the overall ave	e overall average rat rage rate for cause	te for cause of de of death	ath	Note: r	not all causes

A real-world example

HW2: Revisit and extend your HW1 solution

4 Parts

- 1. Produce two Quarto reports
 - a. Detailed analysis report
 - b. Summary report or presentation
- 2. Use different visualizations
- 3. Address grading feedback from HW1
- 4. Use distributed computing with Spark(lyr)
 - a. Distributed data consolidation
 - b. Distributed computation

Today

• Render your HW1 notebook with Quarto

Tutorial: Quarto