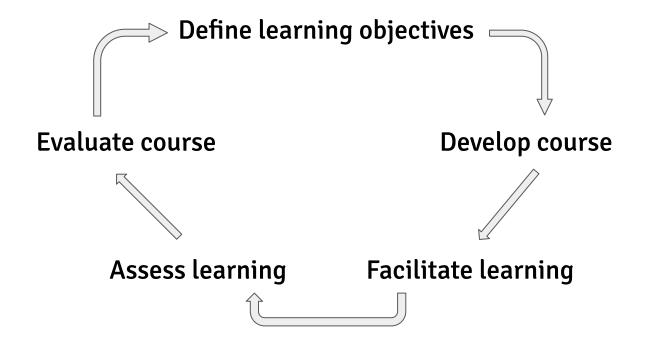
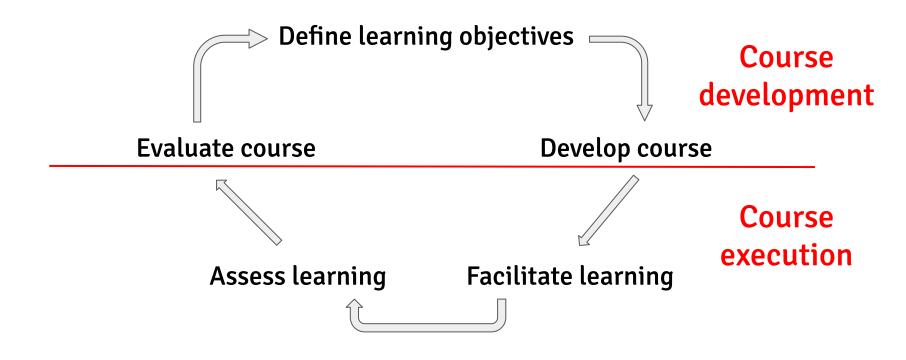
CSE P 590

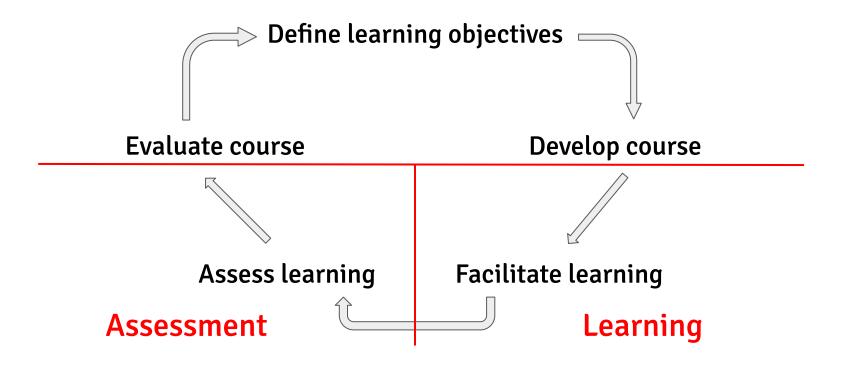
Building Data Analysis Pipelines

Fall 2024

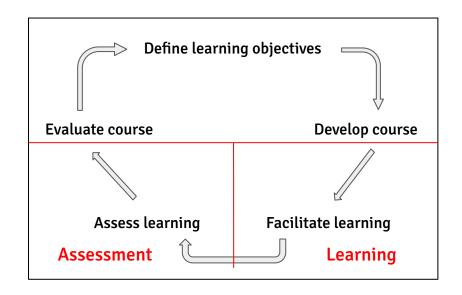
Data visualization and reporting

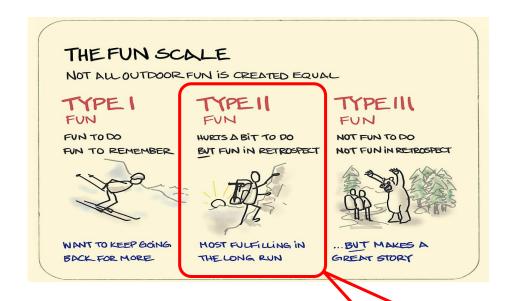

Today


- Logistics and reflection
- Effective tables and visualizations
 - Tables vs. graphs
 - Effective tables
 - Effective visualizations (ggplot2)
- HW2: Overview
- Tutorial: Quarto


Logistics and reflection

Reflections on HW1





HW 1

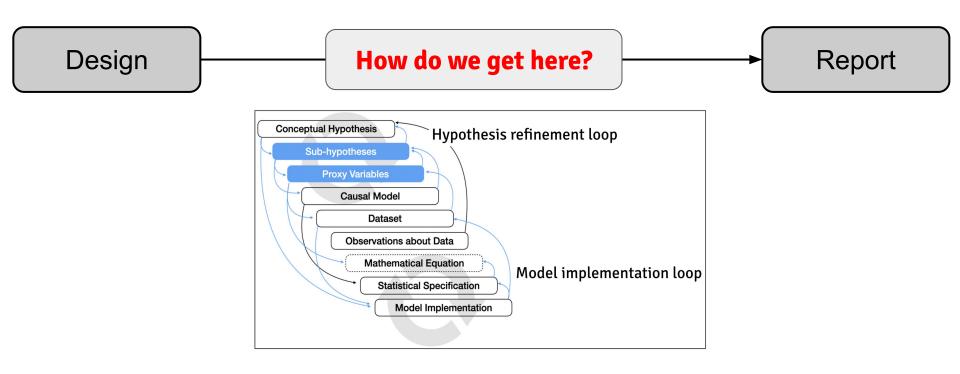
- Designed to facilitate learning
- Two key focus areas:
 - Analysis design and validity
 - Reasoning under uncertainty
- Primer for HW2
- Address HW1 grading feedback (and get HW1 points back)

HW1 in one picture: mostly type II fun

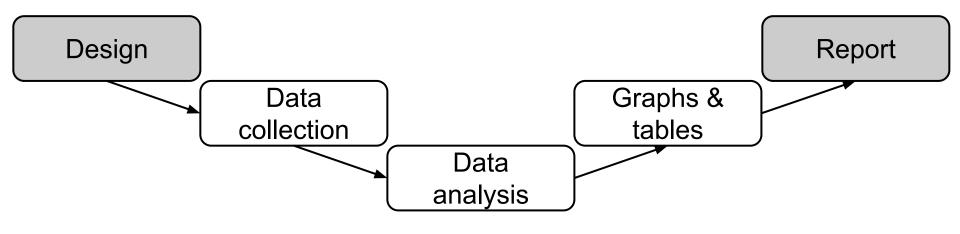
Sweet spot for teaching

Course overview: the big picture

- **09/30:** Course introduction
- 10/07: Analysis design and validity
- 10/14: Data wrangling
- **10/21:** Statistical modeling
- 10/28: Statistical significance and power
- **11/04:** Advanced statistical modeling
- **11/11:** No class
- **11/18:** Data visualization and reporting
- **11/25:** Big data
- **12/02:** Big data

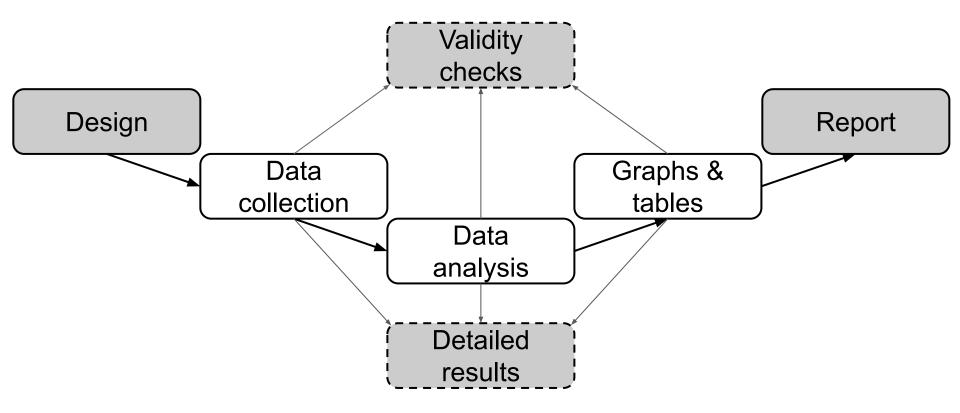

Course overview: the big picture

	09/30: Course introduction	
•	10/07: Analysis design and validity	In-class exercise
•	10/14: Data wrangling	In-class exercise
	10/21: Statistical modeling	In-class exercise
	10/28: Statistical significance and power	In-class exercise
	11/04: Advanced statistical modeling	HW 1
•	11/11: No class	
•	11/18: Data visualization and reporting	HW 2
•	11/25: Big data	In-class exercise
•	12/02: Big data	


Extended due date for HW2 (12/04) and more time for in-class 5!

Tables vs. graphs

From analysis design to report

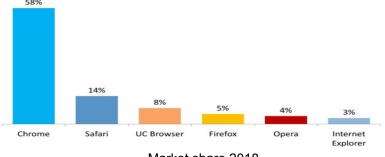


From analysis design to report

Do all analysis results go into the final report?

From analysis design to report

Tables vs. graphs


When are tables useful?

- Compare individual values
- Values involve multiple units
- Precise values are important

•	When	are	grap	hs	useful?
---	------	-----	------	----	---------

- Consider an entire set of values
- Visualize trends and patterns
- Relationships are more important than precise values

	Browser	Market s	hare (%)
		June 08	July 09
All users	Internet Explorer	75.4	67.7
	Firefox	18.9	22.5
	Safari	2.8	4.1
	Chrome	-	2.6
	Opera	2.1	2.0
	Netscape	0.5	0.7
	Other	0.2	0.5

Market share 2018

Effective tables

Effective tables: the run-time data set

- Recall the run-time data set
 - 3 subjects (tax, tictactoe, triangle)
 - 3 strategies (naive, caching, forking)
 - 5 runs to account for the variation in run time

Goal: show run times and relative improvements in a table

Effective tables: layout

TABLE I
RUN TIMES AND IMPROVEMENTS.

Subject	RT-naive	RT-cache	RT-fork	I-cache	I-fork
tax	504.11	247.01	195.42	51.02%	61.31%
tictactoe	17.44	16.32	15.43	6.31%	11.49%
triangle	3.13	2.79	1.67	10.91%	46.62%

Recall the run-time data set

- 3 subjects (tax, tictactoe, triangle)
- 3 strategies (naive, caching, forking)
- 5 runs to account for the variation in run time

What are the pros/cons of Table I? How would you improve it?

Effective tables: layout

TABLE I RUN TIMES AND IMPROVEMENTS.

Compare the two w.r.t. readability, clarity, and interpretability

Subject	RT-naive	RT-cache	RT-fork	I-cache	I-fork
tax	504.11	247.01	195.42	51.02%	61.31%
tictactoe	17.44	16.32	15.43	6.31%	11.49%
triangle	3.13	2.79	1.67	10.91%	46.62%

TABLE II
RUN TIMES AND IMPROVEMENTS FOR THE NAIVE, CACHING (CACHE),
AND FORKING (FORK) STRATEGIES. RUN TIMES ARE GIVEN IN SECONDS
AND AVERAGED OVER FIVE RUNS.

Subject	Run times			Improvements		
	naive	cache	fork	cache (vs. naive)	fork (vs. naive)	
Tax	504	247	195	51.0%	61.3%	
TicTacToe	17.4	16.3	15.4	6.31%	11.5%	
Triangle	3.13	2.79	1.67	10.9%	46.6%	

Effective tables: content

Keep it simple

- Avoid mixing higher-is-better and lower-is-better numbers
- Allow for easy comparisons, primarily by row
- Be consistent about precision vs. significant digits
- Summarize the table (what is the bottom line?)

TABLE II
RUN TIMES AND IMPROVEMENTS FOR THE NAIVE, CACHING (CACHE),
AND FORKING (FORK) STRATEGIES. RUN TIMES ARE GIVEN IN SECONDS
AND AVERAGED OVER FIVE RUNS.

Subject	Run times			Improvements		
	naive	cache	fork	cache (vs. naive)	fork (vs. naive)	
Tax	504	247	195	51.0%	61.3%	
TicTacToe	17.4	16.3	15.4	6.31%	11.5%	
Triangle	3.13	2.79	1.67	10.9%	46.6%	

Effective tables: summaries

Total

VS.

Subject	LOC	Speed up
Tax	8900	10.2%
TicTacToe	120	54.2%
Triangle	80	60.9%
Average	3393	41.8%

Average

What are the downsides of these summaries?

Effective tables: best practices

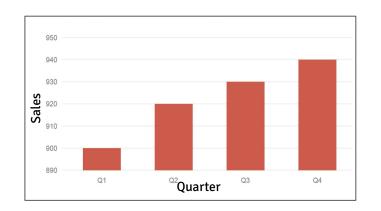
Do

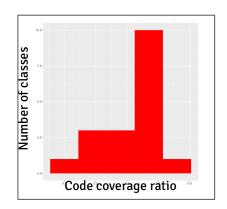
- Make each table self-contained (content and caption)
- Use descriptive (hierarchical) headers
- Right align numbers
- Use meaningful totals or weighted averages
- Be consistent about precision vs. significant digits

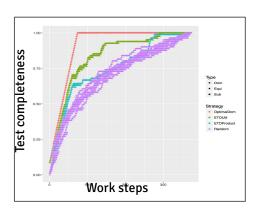
Don't

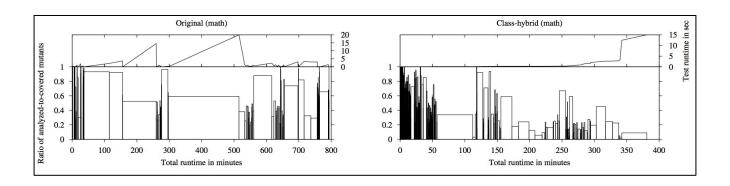
- Don't use horizontal lines between related rows
- Don't use vertical lines between related columns

Effective graphs

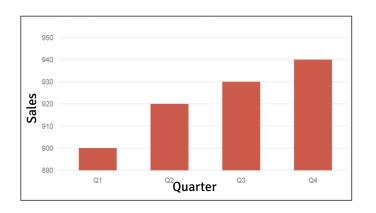

4 beautiful graphs

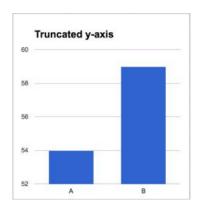

- Small groups of 4-6 students
- 4 example graphs
- For each graph
 - Discuss pros and cons
 - Propose improvements





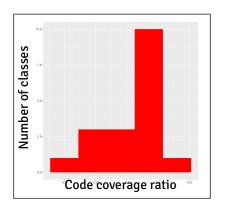
4 beautiful graphs



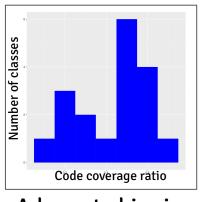


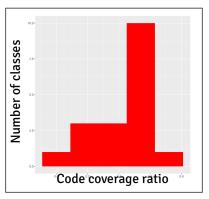

Example 1: bar charts

Truncated axes are misleading and not a proper way to "demonstrate" effect size!

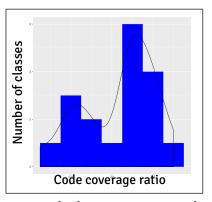

Example 1: bar charts

Truncated axes are misleading and not a proper way to "demonstrate" effect size!


Example 2: histogram

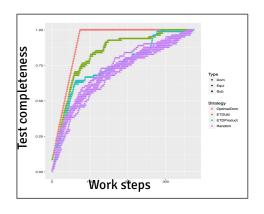

Good visual summary of count data, but binning may be misleading.

Kernel density overlay can provide information about adequate binning.


Example 2: histogram vs. density plot

Adequate binning

Changed binning

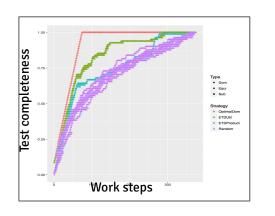


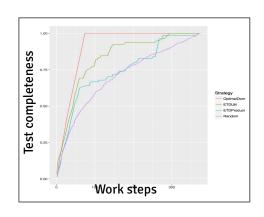
Kernel density overlay

Good visual summary of count data, but binning may be misleading.

Kernel density overlay can provide information about adequate binning.

Example 3: scatter plot

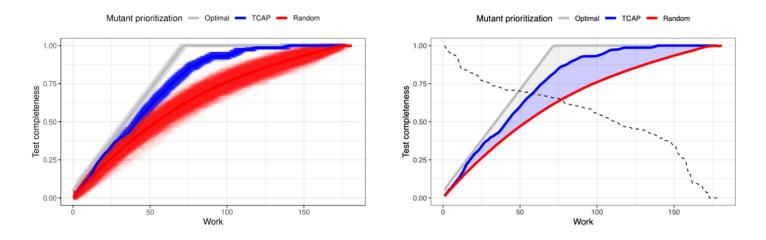



Good visual summary of point clouds, trends, and relationships.

May obscure relevant trends (overlapping points).

Hard to reason about density (without adding transparency).

Example 3: scatter plot vs. line plot

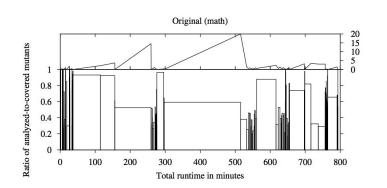


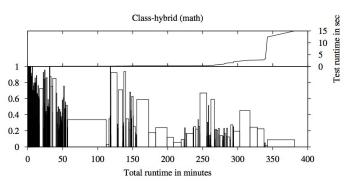
Good visual summary of point clouds, trends, and relationships.

May obscure relevant trends (overlapping points).

Hard to reason about density (without adding transparency).

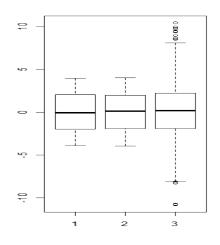
Example 3: scatter plot vs. line plot

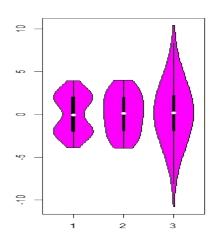



Good visual summary of point clouds, trends, and relationships.

May obscure relevant trends (overlapping points).

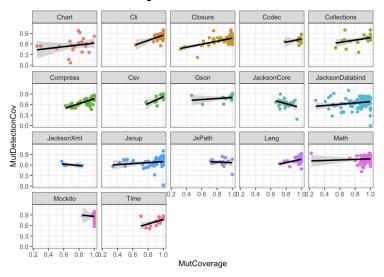
Hard to reason about density (without adding transparency).


Example 4: multi-plot visualization



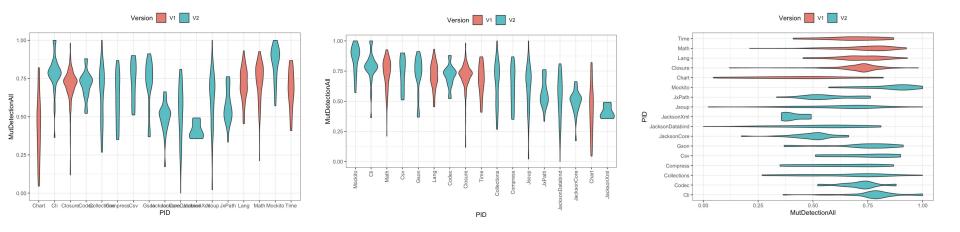
Way too many details!
The key trends and takeaways are obscured.
Good for detailed results but not a final report.

Effective graphs: box plots vs. violin plots



Box plots:

- Good visual data summary
- Nicely complements hypothesis tests
- May be misleading for multimodal data
- May be misleading for small samples


Effective graphs: facet plots

Facet plots:

- Clean visualizations across multiple dimensions of interest
- Allows for comparisons within groups and across groups
- Complementary to other ggplot2 aesthetics (color, shape, etc.)
- Use ggplot's facet_grid for cross-product visualizations (formula syntax)

Effective graphs: reorder and/or flip axes

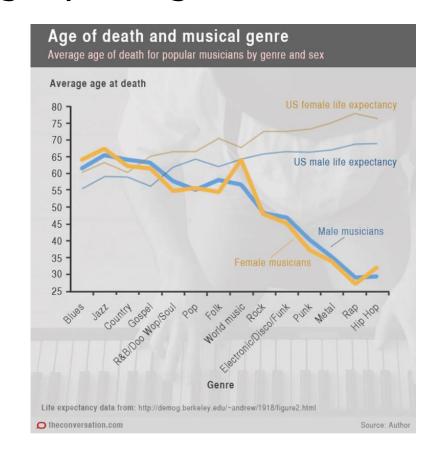
Reorder and/or flip axes:

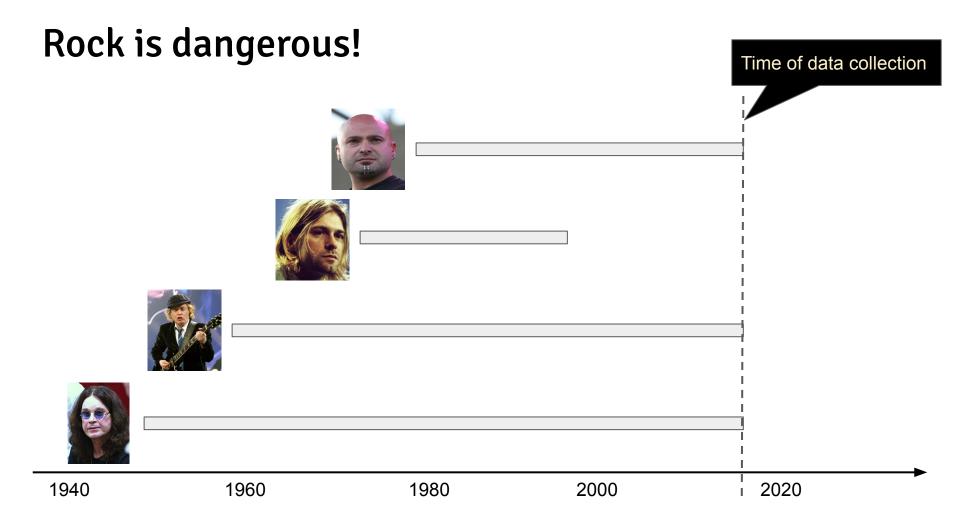
- Reorder by mean/median or by groups of interest etc.
- Flip axes for readability if appropriate
- Favor short labels over rotated labels

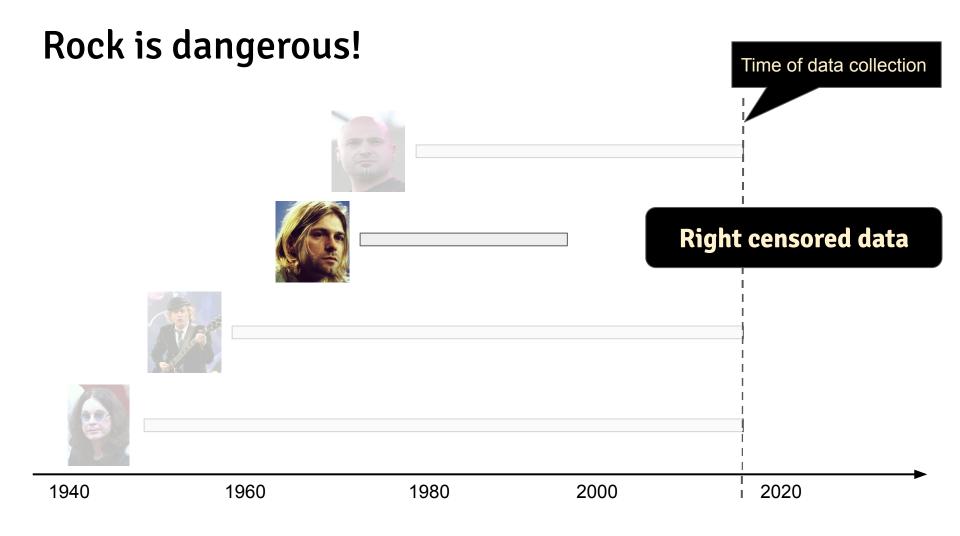
Effective graphs: best practices

Do

- Use ggplot2!
- Make each plot self-contained (content and caption)
- Relate tables and graphs to tell a consistent story
- By default put the DV on the vertical axis
- Reduce complexity with facet plots


Don't


- Don't use multiple, unrelated axes
- Don't connect unrelated data points (choose an appropriate graph instead)


A real-world example

Let's consider the following reporting

	Accidental	Suicide	Homicide	Heart- related	Cancer
% deaths per cause	19.5%	6.8%	6.0%	17.4%	23.4%
Blues	9.2%	2.0%	3.5%	28.0%	24.2%
Jazz	10.6%	2.7%	1.9%	20.7%	30.6%
Country	15.8%	4.7%	1.6%	23.5%	25.1%
Gospel	13.3%	0.9%	3.6%	18.5%	23.0%
R&B	11.5%	1.6%	5.0%	23.2%	26.8%
Pop	19.0%	6.4%	2.9%	16.4%	26.7%
Folk	15.9%	5.5%	4.4%	15.3%	32.3%
World music	12.7%	3.4%	9.6%	17.8%	19.9%
Rock	24.4%	7.2%	3.6%	15.4%	24.7%
Electronic	16.7%	5.0%	10.0%	15.0%	25.0%
Punk	30.0%	11.0%	8.2%	12.6%	18.3%
Metal	36.2%	19.3%	5.9%	11.0%	14.1%
Rap	15.9%	6.2%	51.0%	6.9%	7.6%
Нір Нор	18.3%	7.4%	51.5%	6.1%	6.1%
Red: significantly above the Blue: above the overall ave Green: significantly below the	rage rate for cause of	of death		Note: n	ot all causes show

Rock is dangerous! Time of data collection Use survival analysis or (if appropriate) assume the event happens immediately after data collection (e.g., Right censored data overestimate baseline performance) 1940 1960 1980 2000 2020

HW2: Overview

HW2: Revisit and extend your HW1 solution

4 Parts

- 1. Produce two Quarto reports
 - a. Detailed analysis report
 - b. Summary report or presentation
- 2. Use different visualizations
- Address grading feedback from HW1
- 4. Use distributed computing with Spark(lyr)
 - a. Distributed data consolidation
 - b. Distributed computation

Today

Render your HW1 notebook with Quarto

Tutorial: Quarto