	SE P 590 ta Analysis Pipelines Fall 2024 Big data	 Today Big data characteristics and challenges Big data processing In-class 5
Big data: charac	cteristics and challenges	Big data Characteristics What do we mean by big data?

Big data	Big data: variety of data formats
 Characteristics Volume: data sets are (too) big → distributed analysis Variety: data formats: structured, semi-structured, unstructured Velocity: data changes rapidly → real-time analysis Variability: meaning of data changes 	Structured Semi-structured
 <i>Veracity</i>: noisy data (tradeoff between noisy and useful) <i>Value</i>: informed decision making (value of collected data) 	Unstructured What are differences, examples, and challenges?
Big data: variety of data formats	Big data: distributed data
 Structured Rigid schema Examples: Relational databases, parquet, protobufs Semi-structured 	 Distributed File Systems Datasets stored across multiple nodes HDFS (Hadoop Distributed File System), S3, etc.
 Flexible schema Examples: json, xml, log files 	
 Unstructured No schema Examples: commit/review messages, audio, video 	What are the advantages and challenges of distributed data?

Big data: distributed data

Distributed File Systems

- Datasets stored across multiple nodes
- HDFS (Hadoop Distributed File System), S3, etc.

Advantages

- High fault tolerance
- Data replication for better performance

Challenges

• Data locality: move data vs. move computation

Big data processing

Big data: challenges

Compute bound

- Compute-intensive simulations
- Real-time processing
- High-volume data

Memory bound

• Data exceeds memory on a single machine

I/O bound

- Different data sources (structured, semi-structured, unstructured)
- Data sharing among different processes

Compute bound: Rcpp

Optimize runtime

- Loops or recursive functions
- Custom functions

Libraries

- Advanced data structures
- HPC libraries (e.g., simulations)

library(Rcpp)

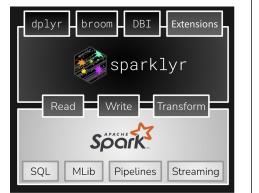
```
cppFunction('int add(int x, int y, int z) {
    int sum = x + y + z;
    return sum;
}')
```

```
add(1, 2, 3)
```

https://adv-r.hadley.nz/rcpp.html

Memory bound: sparklyr (a Spark DSL)

Distributed data storage


- A dplyr backend
- Supports SQL (like dbplyr)
- Lazy evaluation

Distributed data processing

• Support for many data formats

Modeling/ML

• Support for many common model types

I/O bound: arrow

Reduce serialization costs

- Backend for dplyr
- Efficient columnar data format
- Zero-copy data sharing (between R and Python)

https://spark.posit.co	https://adv-r.hadley.nz/rcpp.html
Live demo: Spark	In-class 5