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Abstract
Static analysis is sound in theory, but an implementation may un-
soundly fail to analyze all of a program’s code. Any such omission
is a serious threat to the validity of the tool’s output. Our work is
the first to measure the prevalence of these omissions. Previously,
researchers and analysts did not know what is missed by static
analysis, what sort of code is missed, or the reasons behind these
omissions. To address this gap, we ran 13 static analysis tools and
a dynamic analysis on 1000 Android apps. Any method in the
dynamic analysis but not in a static analysis is an unsoundness.

Our findings include the following. ① Apps built around external
frameworks challenge static analyzers. On average, the 13 static
analysis tools failed to capture 61% of the dynamically-executed
methods. ② A high level of precision in call graph construction is a
synonym for a high level of unsoundness. ③ No existing approach
significantly improves static analysis soundness. This includes those
specifically tailored for a given mechanism, such as DroidRA to
address reflection. It also includes systematic approaches, such
as EdgeMiner, capturing all callbacks in the Android framework
systematically. ④Modeling entry point methods challenges call
graph construction which jeopardizes soundness.

CCS Concepts
• Software and its engineering → Automated static analysis;
Dynamic analysis.
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1 Introduction
A static analysis can be sound and conservative by using a model
that over-approximates the code’s behavior. In contrast, dynamic
analysis is precise, capturing actual run-time behavior, but it is
unsound as it ignores other executions and uncovered code. Hence,
clients can choose soundness (static analysis) or precision (dynamic
analysis) [18]. However, this is to some extent a false choice: sound-
ness is often unattainable in practice due to unsound static models.
This paper investigates this issue in the context of Android.

One reason for unsoundness when analyzing Android apps is
that apps are event- and callback-driven, resulting in a complex
execution flow that static analysis struggles to capture [29, 31]. For
instance, static analysis fails to fully and automatically account
for the implicit invocation of methods by frameworks, such as the
Android framework, Flutter [23], Xamarin [59], etc. The calls to
some application methods are in a framework, which (for scaling
reasons) is often not statically analyzed along with the app. Missing
these implicit calls leads to an incomplete understanding of the
app’s behavior (e.g., missing nodes and edges in the call graph) [7,
35]. This blind spot can be exploited by attackers to circumvent
state-of-the-art static analysis tools, such as FlowDroid [6], and hide
malicious code [25]. Hence, developing the most effective static
data leak detector or static malware detector is little help if the
analysis is run over an unsound static model of the app.

Numerous approaches have attempted to refine call graphs by
accounting for specific mechanisms [6, 8, 19, 24, 34, 35, 44, 46], such
as reflection. In addition, there have been attempts to systematically
analyze the Android framework to collect callbacks [11, 12]. None
of these approaches is comprehensive. Although some studies show
that several mechanisms, such as implicit calls, cause unsound static
analysis [7, 12], the extent of under-approximation of static models
is not known. As a result, there is a need to systematically explore
the amount of methods missed during static analysis and study
their underlying causes.

Our work consists of three parts. First, we identified static anal-
ysis tools via a systematic literature search (section 3.2). Second,
we obtained static and dynamic call graphs for 1000 recent apps.
To do this, we slightly modified each static analysis tool to extract
the call graph it builds. Then, we ran each static analysis tool on
1000 recent apps (section 3.3). We also ran a dynamic analysis to
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determine which methods the apps call at run time (section 3.4).
Third, we examined the differences between the statically- and
dynamically-generated call graphs — in particular, the methods
invoked at run time that do not appear in static models (section 4).

Our study seeks to provide directions to the research community
on how can static analysis of Android apps be improved, particularly
with recent apps utilizing external frameworks.

Our results indicate that call graph construction is slow, even
when using high-performance computing hardware. On average,
only 58% of apps can be statically modeled (only building the call
graph, not applying the analysis that uses the call graph) within 1
hour by the static analyzers (the average size of apps in our dataset
is 24MB and the call graphs computed in our study have an average
of 16 633 nodes and 229 901 edges). Tools putatively using the same
call graph construction algorithms have very different call graphs
and run times. Every static tool suffers significant unsoundness
by missing a substantial number of methods in their static model
that are called at run time. Furthermore, more precise call graph
construction implementations suffer more unsoundness.

Although computing precise call graphs is important, it is prob-
lematic when it compromises soundness, especially with recent
malware using, e.g., implicit call mechanisms. The Scylla Android
malware illustrates how sophisticated threats operate [25]. It uses
the Android framework’s JobScheduler to activate payloads only
under specific conditions. It evades detection by dynamic analyzers
when conditions aren’t met. It evades detection by static analyzers
that overlook JobScheduler’s implicit mechanisms. Consequently,
such malware can infiltrate platforms like Google Play. We have
investigated the root causes for this unsoundness. In general, static
analyzers suffer from lack of understanding of the Android frame-
work and external frameworks, leading to missing many implicit
calls that, in turn, trigger many methods left unanalyzed statically.

To better illustrate this problem, we ran the tools in our study
against the Scylla malware. Only 4 of the 13 tools could statically
reach the trigger point of the malicious code using the call graph.
This suggests that most current tools are insufficiently sound to
handle real-world threats. This poses a significant risk for end-users,
who may unknowingly use malware that enters app markets such
as Google Play because the malware is not detected by these tools.
Nearly every week, new malware is detected in official app markets.

The main contributions of this paper are as follows:

• We conducted a large-scale empirical study by comparing
call graphs yielded by 13 static analyzers over 1000 Android
apps against call graphs yielded by dynamic analysis.

• While the problem of unsoundness is known in the literature,
we are the first to quantify the extent of the problem in
Android app static analysis. In particular, we show that, in
the best case, at least 40% of the methods called at runtime
are overlooked by static analyzers.

• We show that static analyzers are unsound because they are
not properly modeling entry point methods, i.e., root nodes
in the dynamically generated call graph.

Findings’ Implications: Previous papers proposing new static
analysis techniques (e.g., addressing inter-component communica-
tion, reflection, or dynamic loading) often have a formulaic mention

of soundness in the threats to validity section, but do not acknowl-
edge the massive scale of the problem or the fact that improving
soundness is more relevant in practice than improving precision.
Our research findings suggest that:① researchers should pause their
work on new analyses and on call graph precision until they have
solved problems of call graph soundness; and ② library methods
are the most often missed by static analysis, so handling libraries is
probably the most important avenue for future work.

As a result, our study sets the stage for more sound static analysis
of Android apps, which can lead to safer applications and, ultimately,
protect end-users more effectively.
Artifacts. We make all our artifacts available: https://github.com/
JordanSamhi/Call-Graph-Soundness-in-Android-Static-Analysis

2 Motivation
A static analysis uses call graphs to represent the calling relation-
ships betweenmethods. Most static analyses aim to be sound.When
the analysis is unable to resolve a program behavior such as alias-
ing, method dispatch, reflection, etc., a sound analysis must over-
approximate the program’s possible run-time behaviors. Other chal-
lenges for call graph construction in Android apps include inter-
component communication (ICC), callbacks, calls into and out of
native code, asynchronous tasks, GUI-related events, etc., for which
the target of method calls cannot be inferred statically. Unsound-
ness occurs when the estimate of the targets of a method call omits
a target that is called on some execution of the call site [43].

Listing 1 shows how unsoundness occurs with an implicit call.
An implicit call is a method call to a method executed at run time
without a call to the method in the app’s code. Implicit calls, as es-
tablished by our research (cf. Section 4.3), pose a significant obstacle
to call graph construction in static analysis. Omitting them makes
a static analyzer unaware of certain interactions and dependencies
between different parts of the program.

Listing 1 contains: ① a class called MyTask (line 1) extending
the Android framework AsyncTask class; and ② an Activity called
MainActivity (line 11), the first Activity launched when the app is
run, its onCreate() method is executed (lines 13–16). On line 14,
an object myTask of type MyTask is created. Then, on line 15, the
execute() method is called on the myTask object. This call will not
trigger any method called execute() in the app’s code. Instead, the
Android framework implicitly triggers the execution of the doIn-
Background method in the app code (lines 3-5). Additionally, the
onPostExecutemethod will execute after doInBackground completes,
even though the app source code does not call this method.

Implicit calls present a significant challenge for static analysis.
They require additional information to model and analyze an app’s
behavior. However, it raises the question of how analysts can be
expected to possess this knowledge. The Android framework, third-
party frameworks, and libraries lack comprehensive documentation
regarding the existence and usage of implicit mechanisms. This
work measures the amount of such methods, among others, missed
by existing state-of-the-art static analyzers.

3 Empirical Study Setup
Our experimental methodology compares static models with meth-
ods invoked at run time. Dynamic analysis reports actual calls,
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Listing 1 Example: how implicit calls can be triggered in apps.
1 ① public class MyTask extends AsyncTask<Void, Void, String> {
2 @Override
3 protected String doInBackground(Void... params) {
4 return "Background task completed";
5 }
6
7 @Override
8 protected void onPostExecute(String result) {
9 textView.setText(result); // Called after doInBackground
10 }
11 }
12
13 ② public class MainActivity extends AppCompatActivity {
14 @Override
15 protected void onCreate(Bundle savedInstanceState) {
16 MyTask myTask = new MyTask();
17 myTask.execute(); // implicitly calls doInBackground
18 }
19 }

allowing us to identify unsoundness in static models: a method that
has been called at run time must appear in the static call graph.
Current state-of-the-art static analyzers overlook many methods,
showing that statically representing Android apps is not trivial and
is still an open problem. Our goal is to discern why such discrepan-
cies occur and identify the reasons contributing to this problem. To
this end, our study aims to answer the following research questions:
RQ1: How do static analyzers’ call graphs compare to each other?
RQ2: How (un)sound are static analyzers? That is, what propor-

tion of methods executed at run time is missed by static
analyzers?

RQ3: What are the root causes of unsoundness in static analyzers?
RQ4: To what extent would approaches collecting callbacks from

the Android framework systematically improve the models
of static analyzers?

The remainder of this section describes the setup of our study.
Our approach consists of three phases: ① building call graphs of
Android apps using several state-of-the-art static analyzers (sec-
tion 3.3); ② executing the same apps to collect the methods called
at run time (section 3.4); and ③ comparing and studying both sets
of methods (section 4).

3.1 Dataset
We randomly collected a representative sample of 1000 recent real-
world apps from the 24 000 000+ APKs in the AndroZoo reposi-
tory [3] (with a confidence level of 99% and a confidence interval
of ± 5%), all of which were collected in 2023 by AndroZoo from
app markets. The average size of apps in our dataset is 24MB, the
median is 15MB, and the standard deviation is 24MB. These 1000
apps contain an average of 132 687 methods, an average of 108 973
non-library methods, and the medians are, respectively, 110 378 and
96 571. Our dataset is available in our project’s artifacts, along with
our experimental framework.

3.2 Tools
Our selection criteria for tools included: ① tools relying on call
graphs; and ② open-source (which allows us to slightly modify
them for extracting their call graphs).

To gather tools, we relied on a frequently used strategy in system-
atic literature reviews (SLRs): identifying relevant keywords to help

us identify a large number of potential papers from well-known
databases. We searched for "android" AND "static" AND ("call-
graph" OR "call graph" OR "call-graph" OR "model" OR "implicit"
OR "callback" OR "component"). We searched in three databases:
IEEE Xplore, ACM DL, and Science Direct. This search yielded 423
distinct papers, which describe 61 static analysis tools using a call
graph. Among these tools, 21/61 (34%) match our criteria (i.e., use a
call graph, and are open-source).

Table 1: Open-source static analysis tools that use a call graph.
“Runnable” means we could adapt, build, and run the tool.
Tool Runnable Tool Runnable Tool Runnable
ACID [36] ✓ DroiDel [9] IccTA [34] ✓

AppoScopy [20] DroidRA [35] ✓ Jicer [40] ✓

ArpDroid [16] ✓ DroidSafe [24] ✓ MaMaDroid [39] ✓

BackDroid [57] ✓ ELEGANT [33] NatiDroid [32] ✓

BackStage [28] FlowDroid [6] ✓ NaDroid [21]
DidFAIL [27] Gator [61] ✓ RAICC [44] ✓

Difuzer [47] ✓ HybriDroid [30] SootFX [26] ✓

Table 1 shows the list of tools that match our criteria. Among
these tools, we were unable to build 6 of them (i.e., Hybridroid,
ELEGANT, Backstage, DroidDEL, DIDFail, and AppoScopy) and
unable to run one of them (i.e., NaDroid). We have contacted the
authors of these 7 tools. We have received three answers, among
which two to help us build the tools (DidFail and ELEGANT), but
eventually we were not able to build them, and in the third answer
regarding Backstage, one of the authors said that they will try to
contact the developer, we have not received any news so far.

We ran 14 static analysis tools on all the apps, but we dropped
DroidSafe from our experiments as it could only analyze 6 out of
the 1000 apps. Therefore, this paper’s results contain 13 tools.

Note that while each considered tool computes a call graph, each
tool is built differently and may have been designed for different
goals. We briefly describe the main goal of each tool in Table 2. The
supplementary material gives the configuration of each tool as run
in our experiments.

Table 2: Description of the tools.
(1) FlowDroid detects data leaks in Android apps
(2) IccTA detects potential data leaks in apps with an ICC sensitivity
(3) RAICC extends FlowDroid with additional ICC methods
(4) DroidRA extends FlowDroid to resolve reflective calls and improve call graphs
(5) NatiDroid performs cross-language static analyses of both bytecode and native code
(6) MaMaDroid detects malware based on app behavior
(7) BackDroid on-the-fly bytecode search to improve inter-procedural analysis
(8) SootFX extracts features for machine learning
(9) ACID detects API compatibility issues
(10) Gator performs callback-sensitive static analysis
(11) Jicer is a bytecode slicer
(12) ArpDroid detects and repairs incompatible uses of the runtime permission
(13) Difuzer detects hidden sensitive information in apps (via data flow analysis)

3.3 Running Static Analysis
For each static analysis tool that we have considered, we modified
them slightly to extract relevant data, hence our modifications have
no impact on the analyses. Note that several tools, such as DroidRA,
modify the original call graph used. Hence, before extracting the
call graphs, we let the tools exercise the call graphs so that we
extract the call graphs they use for their analyses.

We then ran the modified tool (with different call graph con-
struction algorithms when possible; see fig. 2 and table 4 for all 25
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Listing 2 Instrumentation for logging methods called at run time.
1 public void m() {
2 + Log.d("MY_LOGGER", "<Class: void m()>");
3 // method body
4 + Log.d("MY_LOGGER", "<Class: void m()>--><Cat: void <init>()>");
5 Cat c = new Cat();
6 + Log.d("MY_LOGGER", "<Class: void m()>--><Cat: void walk()>");
7 c.walk();
8 }

configurations) with a 1-hour timeout and with the default con-
figuration described by the developers. Prior to using the 1-hour
timeout, we performed the same experiment with a 10-minute time-
out. The findings remained unchanged. Moreover, with a 1-hour
timeout, the number of successfully analyzed apps did not increase.
Thus, increasing the timeout is unlikely to ① change the findings of
this paper; and ② significantly increase the number of successfully
analyzed apps. The interested reader can check our artifacts for
all the results. Note that, when the timeout is reached, there is no
call-graph, analyzers do not yield a partial call graph.

The output of this process is, for each app and each call graph
construction algorithm, six sets of methods and two sets of edges:

(1) SM: the set of all methods in the app (to obtain this infor-
mation, we have iterated over all classes and counted all
methods present in these classes)1

(2) SMcg : the set of all methods in the call graph
(3) SM¬cg = SM−SMcg : the set of all methods that do not appear

in the call graph
(4) SM¬𝑙 : set of all non-library methods
(5) SM¬𝑙

cg : set of all non-library methods in the call graph
(6) SM¬𝑙

¬cg = SM¬𝑙 −SM¬𝑙
cg : the set of all methods that are neither

in the call graph nor classified as libraries
(7) SE: the set of all edges in the call graph
(8) SE¬𝑙 the set of all edges in the call graph whose targets are

non-library methods.
To determine whether a method is a library or not, we relied on

the list of Android libraries given in [45].

3.4 Running Dynamic Analysis
We built a dynamic call graph analysis. Its main component is

an instrumentation tool called AndroLog [48] that inserts a log
statement at: ① the beginning of each method in the app; and
② each method call in the app. The dynamic call graph analysis
uses the log to construct three sets per app: DM a set of methods
called; DM¬𝑙 a set of non-library methods called; and DE a set of
dynamically collected edges. Note than only the code inside apps
is instrumented, the Android framework is not.

As an example, consider the code in Listing 2. On line 2, a simple
log statement is added with the name of the method (in Jimple
format) that is being executed. Lines 4 and 6 demonstrate how our
instrumentation tool would insert log statements to record that the
current method is invoking the method called within it. Our imple-
mentation is more sophisticated; for example, it correctly handles
the case when the call is in a subexpression that might or might
not get executed. Our implementation does not record the actual
targets of reflective calls. At a call that is executed via dynamic

1We compute these sets using the Jimple intermediate representation.

dispatch, the target is recorded as it appears in the bytecode, rather
than all the method implementations among which dispatch might
choose. Missing calls in the dynamic call graph mean that this paper
may under-report the unsoundness of static analysis tools.

After instrumentation, we signed each app and installed it on a
headless Android emulator based on Google’s android-33 system
image (x86_64).

Subsequently, we exercised each app for 5 min with Monkey [22],
generating random inputs. We used Monkey because of empirical
evidence [53, 54] that, despite the existence of more complex ap-
proaches to augment code coverage, Monkey still achieves the best
coverage performance in practice. Also, a recent study has shown
that after 5 min, the proportion of code covered using Monkey
reaches a “plateau” [54].

The dynamic analysis observed 310 595 043 method calls (includ-
ing implicit invocations in the apps) to 1 082 265 unique methods
across the 1000 apps of our dataset2. The average code coverage (at
the method level) for our dynamic analysis over all 1000 apps is 8%
and the median is 4%. We acknowledge that the code coverage is
low. However, we remind the reader that our goal is not to reach
high code coverage, and that a low code coverage will actually re-
inforce our findings. Indeed, if the number of executed methods is
low, and if static analyzers miss a high proportion of these methods,
then the problem of unsoundness that this paper reports is a lower
bound of the actual problem.

Figure 1 shows the distributions of the number of method calls
and unique methods called during the dynamic analysis with and
without library methods. Table 3 shows the mean and median
numbers of method calls and unique methods collected from the
dynamic analysis. Results indicate that, on average, there are more
than twice as many library calls in Android apps during execution
as non-library calls.

Figure 1: The number of methods called at run time.

Table 3: Mean andMedian of the number of method calls and
the number of unique methods with and without libraries

Mean Median
Method Calls (DM) 310 595 191 862
Unique Methods 3 885 3 236
Non Library Method Calls (DM¬𝑙 ) 136 374 24 310
Non Library Unique Methods 1 355 678

4 Empirical Findings
4.1 RQ1: Comparison of Static Analyzers Model
Figure 2 reports the number of apps successfully analyzed by each
tool. For instance, FlowDroid extracted 624 call graphs using the

2For instance, a method m(), i.e., a given method implementation, can be called𝑛 times,
but is only counted once in the set of unique methods.
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CHA algorithm and 429 call graphs using the SPARK algorithm.
For the remaining apps, i.e., 1000 − 624 = 376 for FlowDroid-CHA,
FlowDroid crashed 7 times and reached the timeout 369 times. For
SPARK, FlowDroid reached the timeout for 566 apps, and crashed
for 5 apps (the detailed results are available in our artifacts). Overall,
most of the considered static analysis tools can only successfully
analyze about half of the 1000 apps. This is a threat to the validity
of previous work that used these tools, which may not have been
run on a representative sample of apps. The most robust tools are
NatiDroid, SootFX, ACID, and Gator.

Figure 2: Number of apps successfully analyzed per tool

Only 126 apps were successfully analyzed by every tool. The
remainder of this paper focuses on those apps, in order to permit
a fair comparison among the tools. The supplementary material
provides the results for all apps. These 126 apps are probably among
the simplest of the 1000, since they did not trigger bugs or limita-
tions in the static analysis tools. Therefore, the actual unsoundness
of static analysis tools in practice is probably worse than reported
by this paper.

Table 4 provides data about the apps together with their libraries
(the "With libraries" columns), and also data about only the app code
(the “Without libraries” columns). Both sets columns are data from
the same analysis run, but the “Without libraries” columns only
count the part of the computed call graph that comes from developer
code. Each |SM | is the number of methods that the analysis tool
discovered in the app. The “%M in CG” columns report howmany of
those methods appear in the call graph: |SMcg |/|SM | (see section 3.3
for definitions). provide statistics about the methods identified by
the tools within the successfully analyzed apps.

Exhaustively comparing the tools is outside the scope of this
paper, because our objective is to quantify unsoundness by using
dynamic analysis as a ground truth. Nonetheless, we note a few
observations from the data.

Different tools find different methods |SM | in an app. One
set of tools (ACID, ArpDroid, BackDroid, Difuzer, MaMaDroid,
NatiDroid, and SootFX) find about61 000 methods per app; another
set of tools (DroidRA, FlowDroid, IccTA, Jicer, and RAICC) finds
about 71 000 per app, and Gator finds 111 000. We have investi-
gated and could find the following explanation for these differences.
Firstly, we confirm that none of the following tools: ACID, ArpDroid,
BackDroid, Difuzer, MaMaDroid, NatiDroid, and SootFX consider
all dex files in apps for the static analysis, they only consider the
main “classes.dex” file and therefore miss many methods if addi-
tional “.dex” files are present in apps, which explain the low number
of methods discovered statically compared to the rest. Secondly, we
confirm that the following tools: DroidRA, FlowDroid, IccTA, Jicer,
and RAICC consider all “.dex” files in apps which explains why they

Table 4:Methods gathered statically in apps, for 126 apps. (CG
= call graph, M. =Methods, Avg. = Average). The denominator
for the % columns is the number of methods in apps.

With libraries Without libraries
Avg. % M. Avg. Avg. % M. Avg.
|SM | in CG |SE | |SM¬𝑙 | in CG |SE¬𝑙 |

FlowDroid

CHA 71 051 38% 399 975 6651 66% 48 218
RTA 71 046 24% 227 493 6651 52% 33 802
VTA 71 045 18% 109 519 6651 42% 16 788
SPARK 71 031 5% 15 250 6649 12% 2391

IccTA

CHA 71 051 38% 399 981 6651 66% 48 220
RTA 71 046 24% 227 541 6651 52% 33 746
VTA 71 045 18% 109 023 6651 41% 16 703
SPARK 71 031 5% 15 249 6649 12% 2391

RAICC

CHA 71 051 38% 397 791 6651 66% 47 894
RTA 71 046 24% 224 574 6651 52% 33 271
VTA 71 045 19% 111 151 6651 41% 16 605
SPARK 71 031 6% 16 264 6650 12% 2434

DroidRA

CHA 71 053 38% 397 872 6652 66% 47 903
RTA 71 048 24% 224 992 6652 52% 33 452
VTA 71 047 19% 111 188 6652 42% 16 749
SPARK 71 033 6% 16 437 6650 12% 2491

NatiDroid CHA 61 758 81% 469 025 4837 88% 40 398
MaMaDroid SPARK 60 500 5% 12 592 4791 14% 2007
BackDroid SPARK 60 500 5% 12 592 4791 14% 2007
SootFX SPARK 61 707 0% 101 4798 1% 9
ACID SPARK 61 707 8% 54 169 4798 48% 4124
Gator CHA 110 824 73% 1 920 412 31 342 90% 655 813
Jicer SPARK 71 144 6% 15 763 6651 11% 2302

ArpDroid SPARK 60 500 5% 12 593 4791 14% 2007
Difuzer CHA 60 567 34% 245 987 4809 65% 31 060

are able to find about 10 000 additional methods compared to the
first set of tools. For the last tool, i.e., Gator, we confirm that it also
consider all “.dex” files in apps but could not find any additional
hint about why it finds 40 000 additional methods in apps.

IccTA, RAICC, and DroidRA add few edges to the call
graph. These tools are built upon FlowDroid and are designed
to add edges to its call graph; in other words, they are intended to
correct unsoundness in FlowDroid. Corresponding rows in table 4
are little different — always well under 10% and usually closer to 0%
different. As shown later in this paper, they do not address the most
important sources of unsoundness in FlowDroid. In some cases,
RAICC-CHA and DroidRA-CHA have fewer edges than FlowDroid-
CHA, even though those algorithms are designed to add edges. We
do not have an explanation for this behavior, though nondetermin-
ism may play a part [50].

More precise algorithms succeed in pruning the call graph.
SPARK is more precise than VTA, VTA than RTA, and RTA than
CHA. Table 4 shows that the more precise algorithms lead to graphs
containing fewer methods and fewer edges. This aligns with the fact
that enhancing precision results in reducing over-approximation.

Static analysis considers large portions of apps to be dead
code. In the “With libraries” columns, most code is dead code (i.e.,
methods not in call graph), likely because no app exercises all parts
of a library that it depends on. More surprising are the “Without
libraries” columns, where FlowDroid considers apps to contain
1/3 to 7/8 dead code (depending on the call graph construction
algorithm). This likely reflects unsoundness (many methods are
present but are not modeled statically in the call graph), since it
seems unlikely that developers would ship 8 times as much code as
an app needs, most of it useless. NatiDroid and Gator more plausibly
claim that 88–90% of the app code may be executed.

Implementations of the same call graph construction al-
gorithm differ. Different implementations of an algorithm may
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yield slightly different results due to different modeling and imple-
mentation choices. The implementations of CHA in FlowDroid and
Difuzer retain very similar percentages of methods. However, the
CHA implementations in NatiDroid and Gator retain dramatically
more methods. In the “Without libraries” columns, all SPARK im-
plementations retain 11–14% of methods — except SootFX which
retains 1% and ACID which retains 48%. We investigated SootFX
and found that its problem is its set of entry points: SootFX uses
only Threads as an entry point, which misses most of the applica-
tion. The set of entry points is at least as important as the call graph
construction algorithm.

RQ1 answer: Our comparison of the static analyzers shows
that: ① only a small proportion, i.e., 58% on average, of apps
can be analyzed by static analysis tools in a 1-hour timeframe;
② static analysis approaches supposed to improve call graphs’
soundness show little variation in the number of methods and
edges in their call graphs; and ③ although static analysis tools
share similar call graph construction algorithms, they exhibit
different (sometimes significantly divergent) call graphs.

4.2 RQ2: Unsoundness: Methods Missed by
Static Analyzers

Figure 3 shows the precision, recall, and f1 score of the methods
in static call graphs compared to methods in dynamic call graphs
(since the dynamic analysis does not yield complete call graphs
given that coverage is limited, we report precision with respect
to the call graphs collected dynamically) for each app and each
configuration, i.e., tools and call graph construction algorithms. For
a fair head-to-head comparison, fig. 3 reports results for the 126
apps that were analyzed by all tools. The supplementary material
provides the results for all apps successfully analyzed by each tool.

The goal of a more precise call graph construction algorithm,
such as SPARK, is to soundly improve the precision of the call
graph. That is, a more precise algorithm should remove infeasible
nodes and edges from the call graph without removing feasible
ones. Figure 3 shows that these algorithms fail at their goal. While
they do improve precision, they do so at the cost of increased
unsoundness. More specifically, in fig. 3, SPARK tends to have
the greatest unsoundness, CHA tends to have the least, and RTA
and VTA are in between. But even the CHA-based tools report
unacceptable unsoundness with 21%-67% recall. We were not able to
determine whether the more precise algorithms are fundamentally
flawed (as fielded in the given tools), or the implementations of the
algorithms are defective. Although the more precise algorithms are
more complex to implement, we did not expect that complexity to
lead to systematically more bugs.

One outlier is the CHA-based Gator tool, which has nearly the
highest level of unsoundness (lowest recall). After investigation,
we found that Gator relies on a unique two-step technique to build
its call graph: first, it considers all methods within the app as a
potential entry point which is a considerable over-approximation;
and second, it refines the set of potential entry points with many
rules based on permissions, the manifest, etc. Future tools should
not adopt its novel call graph construction technique.

Figure 3: Comparison of recall, precision, and f1 score of
all configurations of tools and call graph construction algo-
rithms.

Table 5:Methods called at run time but notmodeled statically.

Tool Algorithm Missing methods (DM \ SMcg)
Mean Median Min Max Total

FlowDroid

CHA 1294 685 14 14 397 163 099
RTA 1499 936 29 14 399 188 845
VTA 1621 1110 41 14 399 204 220
SPARK 1965 1216 42 14 430 247 577

IccTA

CHA 1294 685 14 14 397 163 094
RTA 1498 938 29 14 399 188 799
VTA 1621 1110 41 14 399 204 268
SPARK 1965 1216 42 14 430 247 577

RAICC

CHA 1295 684 14 14 397 163 225
RTA 1522 983 41 14 399 191 785
VTA 1614 1064 41 14 399 203 374
SPARK 1935 1188 42 14 430 243 871

DroidRA

CHA 1295 683 14 14 397 163 195
RTA 1521 976 41 14 399 191 606
VTA 1612 1064 41 14 399 203 174
SPARK 1933 1188 42 14 430 243 570

NatiDroid CHA 1299 704 0 14 382 163 639
MaMaDroid SPARK 2085 1344 42 14 430 262 671
BackDroid SPARK 2085 1344 42 14 430 262 671
SootFX SPARK 2641 1828 84 15 322 332 824
ACID SPARK 2286 1704 84 15 322 288 068
Gator CHA 2213 1462 6 14 815 278 840
Jicer SPARK 1962 1194 42 14 430 247 237

ArpDroid SPARK 2085 1344 42 14 430 262 671
Difuzer CHA 1542 926 14 14 397 194 256

Our finding shows that (in current implementations) the more
precise the algorithm, the more unsound: it misses many meth-
ods, i.e., apps’ code, during analysis. Most research in call graph
construction algorithms has the goal of improving precision. Our
research throws doubt on the desirability of precision-focused call
graph construction algorithms since they are time-consuming to
build and often result in a significant proportion of code being
overlooked. They are strictly worse for analyses related to security,
among other applications.

We again remind the reader that the methods collected dynam-
ically were gathered in a mere 5 minutes of random execution.
Hence, our findings likely underestimate the volume of methods
static analyzers miss.

The “Total” column in table 5 is proportional to missed methods,
and inversely proportional to soundness, in fig. 3. Table 5 breaks
the data down more finely.

We can make several observations: ① although CHA is the high-
est degree of over-approximation in existing call graph construction
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algorithms, it still falls short in capturing a large quantity of meth-
ods; ② SPARK, the most precise call-graph construction algorithm
for Android apps, falls behind, missing almost twice as many meth-
ods on average as CHA does, i.e., SPARK is less sound than CHA
(and RTA and VTA); and ③ with SootFX and ACID at least one app
shows up to 15 322 methods missing, a statistic that could prove
critical if the app is, in fact, a malware.

We observe, in the “Min” column that for some apps, the mini-
mum number of methods missed is low, e.g., 14 for FlowDroid-CHA.
This could indicate that, for some apps, the static models appear to
be sound, i.e., it does not miss many methods called dynamically. To
investigate we have plotted the proportion of methods missed per
app successfully analyzed for FlowDroid-CHA in Figure 4. We can
see that indeed, for some apps, the proportion of methods missed
is low (i.e., for 6 apps, less than 10% of methods were missed). How-
ever, the proportion of methods missed grows quickly and is critical
for most apps.

Furthermore, Figure 5 shows the proportion of code covered
during the dynamic analysis for each of the 126 apps (in the same
order as in Figure 4). We see no correlation between unsoundness
and code coverage, i.e., this is not because code coverage is better,
that unsoundness is worse.

Figure 4: Proportion of dynamically-executed methods
missed by FlowDroid-CHA.

Figure 5: Code Coverage of the dynamic analysis for the 126
apps successfully analyzed by all tools. The code coverage is
at the method level and is expressed in %.

Figure 6: Distributions of the average number of transitive
successors of methods dynamically called.

Moreover, let us now focus on the dynamically-extracted call
graph. For each app, we have computed the following: for each
node in the call graph, the number of transitive successors of the
node. Figure 6 shows the distribution of the average number of
transitive successors for each node for each app. We can see that if
a method𝑚 is missed by a static analyzer, this is in fact hundreds

of methods that will not be modeled, and not analyzed if𝑚 is the
only entrypoint to these methods.
Qualitative Analysis of the Methods Missed On our reduced
dataset, there were 25 successful tool invocations on each of 126
apps = 3150 total invocations. Table 6 shows the top 10 most fre-
quently missed methods. The top 5 methods belong to the com.ryan-
heise package, which is a Flutter plugin [49]. Flutter is a framework
for building apps. The following 5 most frequently missed methods
have their class name obfuscated, preventing us from identifying
their origin. In addition, 8 out of these 10methods are class construc-
tors. (In Java, <init> refers to a constructor method, and <clinit>
a static class initializer.) The remaining 2 methods, onCreate()–a
lifecycle method of the AudioService class that extends the Media-
BrowserServiceCompat class–and size(), were called during run
time but not modeled statically. This is unusual, given that static
analyzers like FlowDroid are expected to handle lifecycle methods
and other standard methods such as constructors.

Table 6: Top 10 most missed methods by static analyzers.
Occurrences Method

2594 com.ryanheise.audioservice.AudioService.<clinit>()
2594 com.ryanheise.audioservice.AudioService.<init>()
2562 com.ryanheise.audioservice.AudioService$d.<init>(AudioService)
2555 com.ryanheise.audioservice.AudioService$a.<init>(AudioService,int)
2551 com.ryanheise.audioservice.AudioService.onCreate()
2422 l.b.<init>()
2358 k.a.<init>()
2315 k.b.<init>()
2290 l.b.size()
2290 r.g.<init>()

Table 7: Top 10 most missed methods by static analyzers
without obfuscated class names.

Occurrences Method
2594 com.ryanheise.audioservice.AudioService.<clinit>()
2594 com.ryanheise.audioservice.AudioService.<init>()
2562 com.ryanheise.audioservice.AudioService$d.<init>(AudioService)
2555 com.ryanheise.audioservice.AudioService$a.<init>(AudioService,int)
2551 com.ryanheise.audioservice.AudioService.onCreate()
2203 com.unity3d.player.h.onActivityStopped(Activity)
2191 com.unity3d.player.h.onActivityPaused(Activity)
2125 vn.hunghd.flutterdownloader.FlutterDownloaderInitializer.onCreate()
2125 vn.hunghd.flutterdownloader.FlutterDownloaderInitializer.a(Context)
2098 vn.hunghd.flutterdownloader.FlutterDownloaderInitializer$a.<init>(g)

Among the next 5 methods with non-obfuscated class names
(Table 7), two methods come from the unity3d framework [52], and
the other 3 belong to a Flutter plugin [17]. For all of the above 15
methods, some algorithms included them in the call graph.

Tables 6 and 7 underscore that frameworks present a significant
obstacle to the precise static modeling of Android apps[5, 9], with
quantitative data beyond previous investigations.

We have contacted the authors of all the tools considered in
our study. We have received 5 replies from the authors of RAICC,
BackDroid, Gator, ArpDroid, and Difuzer. None of them is surprised
about the unsoundness of their model and say that the goal of their
tool is not compute a sound and complete call graph.

RQ2 answer: Our findings reveal an inverse relationship be-
tween the precision and soundness of call graph algorithms. Less
precise algorithms seem more sound but still have significant
issues. CHA-based tools miss at least 40% of methods, while
SPARK-based tools can miss up to 100% for SootFX.
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4.3 RQ3: Root Causes of Unsoundness
Section 4.2 showed that static modeling misses many methods —
that is, it is significantly unsound. This section asks, why are they
overlooked?

Dynamic Call Graph and Entry Point Methods. Our dy-
namic analysis (section 3.4) captures every call from within the app,
and every execution of every method in the app. We remind we
instrumented all apps to log every method call during execution,
as detailed in Section 3.4. Using the set of dynamically collected
edges 𝐷𝐸, this procedure generates a call graph for each app, call
graph that we will call Dynamic Call Graph (or DCG in short) to
differentiate this call graph from the one obtained via static analysis.
If a method is ever executed without being called from within the
app, we call it an entry point. We hypothesize that these entry point
methods are a major cause of unsoundness.

Figure 7: Distribution of the number of entry point methods
called during the dynamic analysis.

Figure 7 shows the distribution of the number of entry point
methods in the DCG for the 1000 apps of our dataset (with and
without considering libraries: note that libraries are embedded
in Android apps when apps are packaged; thus libraries can be
entry points). When libraries are considered, the median is 697,
representing 16.37% of the total number of methods in the DCG, and
the mean is 833 per app. For non-library methods, the median is 136,
representing 4% of the total number of methods and 20.2% of non-
library methods. The mean is 284 per app. Both distributions are
significantly different, as confirmed by a Mann-Whitney-Wilcoxon
(MWW) test [37] (significance level set at 0.05). Our results indicate
that, on average, 1/6 of the methods in the DCG are entry points,
and a 1/5 of non-library methods are entry points. Also, this result
indicates that most entry point methods are methods from libraries.

These entry point methods are key in our study because they
are hard for static analyzers to discover. Indeed, there is no call
to these methods in the app code. So, without proper modeling of
these entry points methods, a static analyzer will simply miss them.
Moreover, as shown in Section 4.2, if one method is missed, there
are hundreds of additional transitive methods potentially missed.

Let us now further investigate these entry point methods. Table 8
shows the top ten entry point methods (with libraries) in the DCGs
of apps in our dataset. Six methods are from the androidx pack-
age and four are from the com.google package, which provides
additional libraries developed by Google.

Entry PointMethodsMissed by Static Analyzers: Previously,
we have seen that many different methods from many classes are
entry points in the DCG, but we have not yet checked if static ana-
lyzers miss these methods. In fact, all the top 10 methods of Table 8
and Table 9 are missed by static analyzers. We have investigated
further, and we observed that all static analyzers overlooked the top
5352 entry point methods among the 776 075 entry points identified.
Among these identified entry points, 34.5% (267 843) were missed

Table 8: Top 10 entry point methods in the DCG of the 1000
apps (ranked per number of occurrences)

Occurrences Method
961 androidx.core.app.CoreComponentFactory.<init>()
955 androidx.core.app.CoreComponentFactory.instantiateApplication(ClassLoader,String)
944 androidx.core.app.CoreComponentFactory.instantiateProvider(ClassLoader,String)
794 androidx.startup.InitializationProvider.onCreate()
790 com.google.firebase.provider.FirebaseInitProvider.onCreate()
786 androidx.startup.InitializationProvider.<init>()
781 com.google.firebase.provider.FirebaseInitProvider.attachInfo(Context,ProviderInfo)
780 com.google.firebase.provider.FirebaseInitProvider.<init>()
763 androidx.core.app.CoreComponentFactory.instantiateActivity(ClassLoader,String,Intent)
713 com.google.android.gms.dynamite.DynamiteModule.<clinit>()

Table 9: Top 10 entry point non-library methods in the 1000
dynamic call graphs

Occurrences Method
191 com.unity3d.player.UnityPlayer$5.run()
185 com.ryanheise.audioservice.AudioService.onCreate()
185 com.ryanheise.audioservice.AudioService.<init>()
184 com.ryanheise.audioservice.AudioService.<clinit>()
184 com.unity3d.player.UnityPlayer$d.<clinit>()
183 com.unity3d.player.UnityPlayer$1.onClick(DialogInterface,int)
181 k.a.<clinit>()
174 b1.a.<clinit>()
170 com.unity3d.player.UnityPlayer.<clinit>()
168 b1.b.<clinit>()

by static analyzers. Regarding non-library entry point methods,
representing 272 313 of the total, the top 5863 methods were not
modeled. In total, 95 309 methods were missed, representing 35%
of the non-library entry points. Our results highlight a substantial
gap in the coverage provided by static analysis tools concerning
identifying entry points of the DCGs.

Note that these missed entry point methods represent 20.3% of
the total methods missed by the static analyzers. The rest of the
methods missed (i.e., 79.7%) are transitive methods of the dynamic
entry points. This result validates our hypothesis that entry points
in the DCG are one of the main causes of unsoundness in Android
app static analyzers.

Let us now examine the top 40 method names that were over-
looked by static analyzers among the entry points identified through
dynamic analysis. Note that, in this part, we only look at method
names, i.e., no matter their class (as studied in Tables 8 and 9). Fig-
ure 8 illustrates the number of occurrences of method names found
in the set of dynamic entry points that were not captured by static
analyzers. First, we notice that static constructors (i.e., < 𝑐𝑙𝑖𝑛𝑖𝑡 >)
are by far the most missed methods with 56 708 occurrences. By
comparison, constructors (i.e., < 𝑖𝑛𝑖𝑡 >) have 4209 occurrences.
This result indicates that constructors are particularly prone to
being overlooked by static analysis tools. We observe that a high
proportion of obfuscated methods are also hard to model by static
analyzers (i.e., methods with names such as “a”, or “b”). Interest-
ingly, several methods that are indicative of well-known implicit
mechanisms, such as run(), call(), onCreate(), execute(), onClick(),
etc., continue to be neglected by static analyzers. This observation
shows significant opportunities for improving the soundness of
existing tools and techniques.

Further, Figure 9 shows the same information as in Figure 8 but
without obfuscated method names. We still observe well-known im-
plicit mechanisms with methods starting with “on”, such as onCon-
figure, onResame, etc. But, we also see that several other methods
are overlooked, such as accept, read, close, build, values, etc. Our
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Figure 8: Top 40 most unique missed entry point method’
names by static analyzers (logarithmic scale)

results give insights into which direction future research should
dig into to improve the soundness of static analysis. We provide, in
our replication package, a list of 7137 unique method names and
a list of 220 127 methods to provide insights for future research to
improve the soundness of static analysis of Android apps.

Figure 9: Top 40 most unique non-obfuscated missed entry
point method’ names by static analyzers

RQ3 answer: Determining the root causes of missed methods
is complex, necessitating a thorough investigation of all missed
methods in apps. Despite this complexity, our study offers sev-
eral insights: ① static analyzers lack understanding of the An-
droid and external frameworks; and ② modeling entry point
methods challenge call graph construction. Our study highlights
many opportunities for future research and paves the way for
improving the soundness of static analysis tools.

4.4 Case Study
This section presents examples of methods missed by static analysis
tools. These examples were selected randomly among the methods
that were missed by static analyzers.

Case 1: Method com.lyokone.location.FlutterLocationService.a-
(Activity)3 is invoked by h.j.a.b(), which is called by h.j.a.a(), and ul-
timately by h.j.a.onDetachedFromActivity(), a Flutter method called
implicitly defined in class io.flutter.embedding.engine.plugins.activ-
ity.ActivityAware. To conclude, method com.lyokone.location.Flut-
terLocationService.a(Activity) is missed because of an initial im-
plicit call that is not modeled since the h.j.a.onDetachedFrom-
Activity() methods is an entry point in the DCG.

3 in app: 78064E0B68067BC764102B47391F0D912F8C250E17A80FDC3828EBBEA53F497F

Case 2: Method com.gulfbrokers.android.app.database.MyData-
base_Impl.createInvalidationTracker()4 which is invoked in the
static initializer of the abstract RoomDatabase class. MyDatabase_-
Impl (a subclass of RoomDatabase) is instantiated in the onOpen()
method, which is declared in an anonymous object created in the
app that extends the androix.room.RoomOpenHelper.Delegate class
(which necessitates onOpen() to be overridden). Method onOpen()
is called implicitly by androidx (part of the Android framework)
and is, therefore, an entry point in the DCG.

Case 3: The method c.a.a.a.i.x.j.h0.onOpen(android.database-
.sqlite.SQLiteDatabase)5, inherited from the android.database.sqlite-
.SQLiteOpenHelper class, which implements five implicit mecha-
nisms, was not modeled successfully. This method is called implictly
by the android framework. Again, it is an entry point in the DCG.

Similarly, methods from the Cordova and Flutter frameworks
were also missed. Specifically, methods com.getcapacitor.cordova.-
MockCordovaWebViewImpl$CapacitorEvalBridgeMode.onNative-
ToJsMessageAvailable(org.apache.cordova.NativeToJsMessageQue-
ue)6 and com.mr.flutter.plugin.filepicker.FilePickerPlugin.onAtta-
chedToEngine(io.flutter.embedding.engine.plugins.FlutterPlugin$F-
lutterPluginBinding)7. These methods, called implicitly by the re-
spective frameworks, are never called within the apps, which
prevented the tools from modeling them.

These examples indicate limitations to handle implicit mecha-
nisms across various frameworks from existing static analysis tools.
This suggests a research gap, indicating that further investigation
into these frameworks is needed. By studying these frameworks
and identifying their implicit mechanisms, there is a potential to
improve static modeling significantly. Hence, our research suggests
that the Android framework still contains numerous unexplored
implicit mechanisms, highlighting the necessity for continued ex-
ploration and analysis.

4.5 RQ4: Can Systematically-Collected
Callbacks Improve Soundness?

To the best of our knowledge, two papers, in which the authors
devise techniques to collect implicit mechanisms from the Android
Framework, have been presented. The first one presents Edge-
Miner [12], a technique to collect callbacks (i.e., a type of implicitly
invokedmethod) systematically from the Android framework. Their
technique involves the static analysis of the Android framework
in order to generate summaries of API methods describing the im-
plicit control flow transitions of callbacks. The second one presents
Columbus [11] an automated technique that statically analyzes the
Android framework and apps under test. Their technique involves
identifying apps’ methods that override framework methods to
build a mapping between registration and callback methods.

To determine whether systematic approaches aiming to capture
implicit mechanisms in the Android framework cover the methods
missed by the static analysis tools studied, we have contacted the
authors of EdgeMiner and Columbus. Unfortunately, we could not
gather data from Columbus due to a lack of response and an empty

4 in app: E44DDFB0FDE572171BA60595B7AD6BC95AA7ACFA8AA932473C4AE6CBC0A3589C
5 in app: 14DDDDBCB6395363B490A32C33A8924E16F94295F77E2DC27A1453D754465ABC
6 in app: 6E2AB5488A78E61BF63EE4CFD942E85D92C2CB10F99F86E2338448E8346555D1
7 in app: 78064E0B68067BC764102B47391F0D912F8C250E17A80FDC3828EBBEA53F497F
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repository [42]. EdgeMiner’s authors shared their data, allowing
us to conduct a comparative analysis.

By extracting potential callback methods from the EdgeMiner
dataset and comparing thesewith themethods called dynamically in
our study, we could evaluate the potential improvement EdgeMiner
would bring to static analyzers. We have computed the difference
between the set of unique called methods (DM) and the set of Edge-
Miner’s unique potential callbacks (𝐸𝑀), expressed as DM \ 𝐸𝑀 .

With |DM | being 1 082 265 and |𝐸𝑀 | being 19 510, we found
that |DM \ 𝐸𝑀 | equaled 1 081 886. This suggests that EdgeMiner
would only help static analyzers to model 1 082 265− 1 081 886 =
379 additional methods out of the 1 082 265 called dynamically. Our
research suggests that the findings reported in the EdgeMiner’s
paper may not hold the same level of efficiency for improving the
soundness of static analyzers. This limited improvement that Edge-
Miner would bring to static analyzers might be attributed to several
factors: ① The potential presence of false-positive results in the
EdgeMiner dataset (i.e., methods collected not being callbacks); and
② The fact that EdgeMiner focuses on the Android Framework,
thereby potentially missing callbacks from external frameworks
like React Native, or Flutter, as well as those triggered by languages
such as C++ or JavaScript, which can also trigger bytecode methods.

RQ4 answer: Existing approaches that systematically collect
implicit mechanisms from the Android framework dot not sig-
nificantly augment the static models of current static analyzers.

5 Threats to Validity
As discussed in section 3.4, the runs in our experiments achieve
low coverage. This means that our results underestimate the true
extent of the missed methods.

Our evaluation is over only 13 static analysis tools and 25 con-
figurations. This was all the open-source tools we could find and
run after extensive efforts. Other tools may behave differently, but
13 tools already offer substantial breadth to our investigation.

Our study’s scope was limited to Dalvik bytecode, which is the
compiled form of Java/Kotlin Android code and is the dominant
form of code that runs in Android apps. If an app used other lan-
guages, e.g., C or JavaScript, they would be treated by our experi-
ment like library code. To the best of our knowledge, among the
tools considered in our study, only NatiDroid models C code to get
a more accurate specification of Android API protection. When a
static tool does not model C and JavaScript code, its unsoundness
is greater than reported in our experiments.

Static analysis might be hindered by packed apps. Packing is a
technique to obscure code or data. The process involves compress-
ing or encrypting code, which is uncompressed or decrypted at
run time. This makes static analysis more difficult since the code is
hidden and only revealed during execution. To check for packing,
we used the ApkId tool [4]. It was observed that only two apps
out of the 1000 apps of our dataset were using packed code. In
both cases, the packer used was DexProtector [15], it is used to
protect apps from tampering, reverse-engineering, and cracking.
As a result, since only 2 apps use packing, we can eliminate packing
as a potential barrier to creating sound call graphs in our dataset.

Similarly, static analysis can be hindered by dynamic loading.
For instance, classes might be downloaded from an external server

and loaded at run time. In this case, existing static analyzers cannot
account for code loaded dynamically. Packing and dynamic loading
can also affect our dynamic analysis since we cannot instrument
the packed or loaded code dynamically. This is mitigated by the
fact that, if we had instrumented more methods, we would have
shown that the problem of unsoundness is worse than it appears.

The performance of a static analysis is affected by its configura-
tion.We used each tool’s default configuration, but it is possible that
some other configuration would have yielded better call graphs.

Finally, the 1-hour timeout to compute a call graph may not be
adequate for some apps or tools, as increasing the timeout could
allow to fully analyze more apps.

6 Related Work
The literature contains many approaches to handle implicit mecha-
nisms for the Android platform. Section 6.1 describes studies ad-
dressing specific implicit mechanisms in apps and proposes a static
model for them. Section 6.2 presents studies to systematically ana-
lyze the Android framework for implicit mechanisms. Section 6.3
presents studies measuring call graph soundness.

6.1 Handling Particular Implicit Mechanisms
Callbacks. Callback mechanisms register methods executed by the
Android framework in response to events like clicks. These methods
are called implicitly, without explicit calls in the app code, posing
challenges for static analyzers. Techniques have been developed to
account for these callbacks.

FlowDroid [6] was a pioneer in statically modeling callbacks
in Android apps. It would construct a call graph per component,
identifying calls to systemmethods with callback interfaces (defined
in layout XML files) and incrementally extending the call graphwith
newly added method calls. Furthermore, FlowDroid also includes
handpicked callback methods in configuration files. Yang et al. [62]
conducted a study on lifecycle and user-driven callbacks in Android
apps. Their approach utilizes a GUI model to capture the app’s
graphical user interface and generates a callback control flow graph.
By analyzing the generated GUI model, the authors extract possible
sequences of user GUI events that correspond to valid paths in
the model. Likewise, Wu et al. [58] introduced a callback-aware
technique focusing on two callback methods: system-triggered and
user-triggered. The former includes lifecycle and callback methods
of resource classes, such as onDestroy(), while the latter represents
callbacks triggered by user interactions with the GUI.
Inter-Component Communication. Android apps consist of
various components that communicate with each other through
inter-component communication (ICC) methods provided by the
Android framework, such as startActivity() and sendBroadcast().
These ICCmethods trigger the execution of lifecycle methods imple-
mented by each component, including onCreate() and onReceive().
The communication between components through ICC methods
involves implicit calls to these lifecycle methods from the Android
framework. Numerous research efforts have been dedicated to re-
solving the target components of ICC communication.

IccTA [34] relies on composite constant propagation [38] and
instrumentation to infers the potential targets of Intents, while
Amandroid [56] generates data flow and data dependence graphs to
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infer possible target components. DroidSafe [24] employs string and
class analysis to infer target components and modifies ICC method
calls to explicit lifecyclemethod calls. RAICC [44] addresses atypical
ICCmethods, such as SmsManager.sendTextMessage(), by resolving
potential targets with constant propagation and instrumenting the
app to include ICC method calls (e.g., startActivity()). ICCBot [60]
is a recently released tool that performs context-sensitive and inter-
procedural analysis to infer component transitions connected via
fragments, modeling data carried by ICC objects like Intents. Addi-
tionally, Chen et al. [13, 14] also recently developed an approach to
construct an Activity Transition Graph to create storyboards for
apps using ICC-related information to improve activity coverage.
Reflection. The reflection mechanism allows for run-time intro-
spection, enabling the execution of methods without explicitly
calling them in the source code, i.e., using reflective calls.

More than ten years ago, TamiFlex [10] was proposed to boost
static analyzers with information dynamically gathered about re-
flective calls. TamiFlex introduced an instrumentation engine to
insert regular method calls into apps to boost static analyzers.
DroidRA [35] is an instrumentation-based analysis technique that
enhances apps by resolving reflective calls using the COAL solver [38]
to infer reflection targets. By instrumenting the app and adding
explicit calls for each resolved reflective call, DroidRA improves
analysis accuracy. In addition, Barros et al. [7] propose a two-fold so-
lution for resolving reflection call targets. Their approach includes
a reflection-type system for inferring class and method names and
a reflection solver for estimating invocable method signatures.

➠ Contrary to these approaches, we do not aim at identifying
and focusing on single implicit mechanisms in Android apps. Our
empirical study has been devised to capture any method call –
implicit or not– happening at execution time but not modeled
statically to understand and thus improve static analysis models.

6.2 Systematic Studies
EdgeMiner. EdgeMiner [12] systematically analyzes multiple An-
droid framework versions to identify callbacks and their registration
methods using inter-procedural backward data flow analysis.
Columbus. The latest work that systematically analyzes the An-
droid framework to search for callbacks is Columbus [11]. The
authors statically analyze the Android framework to identify call-
backs by considering protected or public methods with at least one
caller in the framework. Then they construct a call graph of the
framework and over-approximates possible targets when type infer-
ence fails. Additionally, the authors consolidate callbacks inherited
from superclasses by traversing the class hierarchy to produce a
mapping from the registration method to the callback method.

➠Contrary to theseworks, our study aims at revealing the extent
to which static analyzers’ model are unsound with a high level a
precision. Also, our work do not focus on the Android framework
and callbacks, rather it encompasses any method that could be
missed statically, and from any source, e.g., an external framework.

6.3 Call Graph Soudness
Ali et al. [1] investigate the efficacy of JVM-bytecode-based static
analysis across various JVM-hosted languages, including Scheme,
Scala, OCaml, Groovy, Clojure, Python, and Ruby. The authors

found that the analyses produce sound call graphs for Scheme,
Scala, and OCaml, similar to Java, but fails to do so for Groovy,
Clojure, Python, and Ruby due to their extensive use of reflection
and invokedynamic instructions. Reif et al. [41] have presented
Judge, a toolchain designed to identify sources of unsoundness in
call graphs. The authors leverage Judge and a test suite to com-
pare different call graph implementations (Soot, WALA, DOOP,
and OPAL), evaluate language features and APIs’ prevalence that
impact soundness in modern Java bytecode. Sui et al. [51] study the
prevalence of dynamic language features in modern programming
languages. It catalogs dynamic features for Java and presents a
micro-benchmark that helps investigate the soundness of static
analysis framework (i.e., Soot, Wala, and Doop). Aljawder [2] com-
pares static call graphs built with FlowDroid with dynamic call
graphs resulting from execution with Monkey. They found that
62/92 apps were missing edges in the static call graph, but did not
investigate root causes. Wang et al. [55] address the unsoundness
in static analysis of Android GUIs, highlighting mismatches be-
tween existing tools like FlowDroid, IccTA, GATOR, and runtime
behavior. Their study shows that these tools often miss runtime
sequences of callbacks and parameters, due to the complexity of the
Android framework. The paper suggests improving static analysis
with runtime behavior insights to reduce unsoundness.

➠ Contrary to these studies, we do not concentrate on specific
language features. We examine real-world call graphs produced by
static analysis tools and dynamic analysis. We then compare these
call graphs, highlighting the discrepancies, i.e., methods called at
runtime that must appear in the static call graph but do not. Our
study reveals that many methods are missed in real-world apps due
to factors like implicit calls, not just language features.

7 Conclusion
We conducted an empirical study to measure how much static
analyzers under-approximate their models and to identify discrep-
ancies between static models and dynamic data. Our investigation
revealed key insights: ① both Android and external frameworks
present significant challenges for current static analyzers in build-
ing sound models; ② highly precise call graph algorithms result
in significant unsoundness; ③ no existing systematic or specific
approach drastically ameliorates soundness; and ④ modeling entry
point methods poses a major challenge to call graph construction
and soundness. Our findings indicate that ① even the most effective
and precise static analysis is useless with unsound static models;
and ② the issue is likely worse than described due to low code
coverage in our dynamic analysis. Therefore, innovative techniques
are needed to improve the soundness of Android static analysis.

8 Data Availability
To promote transparency and facilitate reproducibility, our artifacts
are publicly available: https://github.com/JordanSamhi/Call-Graph-
Soundness-in-Android-Static-Analysis
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