
AI-Assisted Assessment of Coding Practices
in Modern Code Review

Manushree Vijayvergiya
manushree@google.com

Google
Zurich, Switzerland

Małgorzata Salawa
magorzata@google.com

Google
Zurich, Switzerland

Ivan Budiselić
ibudiselic@google.com

Google
Zurich, Switzerland

Dan Zheng
danielzheng@google.com

Google
Mountain View, USA

Pascal Lamblin
lamblinp@google.com

Google
Montreal, Canada

Marko Ivanković
markoi@google.com

Google
Zurich, Switzerland

Juanjo Carin
juanjocarin@google.com

Google
Sunnyvale, USA

Mateusz Lewko
mlewko@google.com

Google
Zurich, Switzerland

Jovan Andonov
jandonov@google.com

Google
Zurich, Switzerland

Goran Petrović
goranpetrovic@google.com

Google
Zurich, Switzerland

Daniel Tarlow
dtarlow@google.com

Google
Montreal, Canada

Petros Maniatis
maniatis@google.com

Google
Mountain View, USA

René Just∗
rjust@cs.washington.edu
University of Washington

Seattle, USA

ABSTRACT
Modern code review is a process in which an incremental code con-
tribution made by a code author is reviewed by one or more peers
before it is committed to the version control system. An important
element of modern code review is verifying that code contributions
adhere to best practices. While some of these best practices can be
automatically verified, verifying others is commonly left to human
reviewers. This paper reports on the development, deployment,
and evaluation of AutoCommenter, a system backed by a large
language model that automatically learns and enforces coding best
practices. We implemented AutoCommenter for four programming
languages (C++, Java, Python, and Go) and evaluated its perfor-
mance and adoption in a large industrial setting. Our evaluation
shows that an end-to-end system for learning and enforcing coding
best practices is feasible and has a positive impact on the devel-
oper workflow. Additionally, this paper reports on the challenges
associated with deploying such a system to tens of thousands of
developers and the corresponding lessons learned.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

∗Work done at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0685-1/24/07
https://doi.org/10.1145/3664646.3665664

KEYWORDS
Artificial Intelligence, Code Review, Coding Best Practices
ACM Reference Format:
Manushree Vijayvergiya, Małgorzata Salawa, Ivan Budiselić, Dan Zheng,
Pascal Lamblin, Marko Ivanković, Juanjo Carin, Mateusz Lewko, Jovan An-
donov, Goran Petrović, Daniel Tarlow, Petros Maniatis, and René Just. 2024.
AI-Assisted Assessment of Coding Practices in Modern Code Review. In
Proceedings of the 1st ACM International Conference on AI-Powered Software
(AIware ’24), July 15–16, 2024, Porto de Galinhas, Brazil. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3664646.3665664

1 INTRODUCTION
Modern code review [21, 23] (compared to holistic code review [8])
has grown organically over the years in open-source and industrial
settings. A set of common peer-review criteria have emerged [5, 20,
21], which include coding best practices. Many companies, projects,
and even programming languages formally define them in the form
of “style guides” [1–4] that commonly cover the following aspects:

• Formatting: line limits, use of whitespaces and indentation,
placement of parentheses and brackets, etc.;

• Naming: capitalization, brevity, descriptiveness, etc.;
• Documentation: expected placement and content of file-level,
function-level, and other comments;

• Language features: use of specific language features in differ-
ent (code) contexts;

• Code idioms: use of code idioms to improve code clarity,
modularity, and maintainability.

Developers generally report high satisfaction with modern code
review processes [23, 28]. One of their main benefits is the learning
experience for code authors who are not familiar with the codebase,
specific language features, or common code idioms. During a review,
an expert developer educates the code author on best practices, in

https://orcid.org/0009-0006-3957-5399
https://orcid.org/0009-0003-4904-7109
https://orcid.org/0009-0008-6696-3842
https://orcid.org/0009-0006-4523-6262
https://orcid.org/0009-0009-9746-2001
https://orcid.org/0000-0002-8548-6008
https://orcid.org/0009-0002-6099-3940
https://orcid.org/0009-0007-5192-7913
https://orcid.org/0009-0006-6823-2790
https://orcid.org/0000-0002-8056-7431
https://orcid.org/0009-0009-4304-6395
https://orcid.org/0000-0003-3777-5291
https://orcid.org/0000-0002-5982-275X
https://doi.org/10.1145/3664646.3665664
https://doi.org/10.1145/3664646.3665664

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Manushree Vijayvergiya et al.

addition to reviewing (and learning about) the code contributions
and their implications.

Static analysis tools such as linters [15] can automatically verify
that code adheres to some best practices (e.g., formatting rules), and
some tools can even automatically fix violations. However, nuanced
guidelines or those with exceptions are difficult to automatically
verify in their entirety (e.g., naming conventions and justified devi-
ations in legacy code), and some guidelines cannot be captured by
precise rules at all (e.g., clarity and specificity of code comments)
and rely on human judgement and collective developer knowledge.
As a result, it is generally expected that human reviewers check
code changes for best practice violations.

The biggest cost of the code-review process is the time required,
especially from expert developers. Even with significant automa-
tion in place, and keeping the process as lightweight as possible, a
developer can easily dedicate several hours daily to this task [23].

Recent advances in machine learning, capabilities of large lan-
guage models (LLMs) in particular, suggest that LLMs are suitable
for code-review automation (e.g., [11, 16, 17, 24–26]). However, the
software engineering challenges around deploying an end-to-end
system at scale remain unexplored. Likewise, extrinsic evaluations
of such systems on overall efficacy and user acceptance are missing.

This paper investigates whether it is possible to partially au-
tomate the code-review process, specifically the detection of best
practice violations, thereby providing timely feedback for code
authors and allowing reviewers to focus on overall functionality.
Specifically, this paper reports on our experience of developing,
deploying, and evaluating AutoCommenter—an automated code-
review assistant—in an industrial setting at Google, where it is
currently used by tens of thousands of developers every day.
In summary, the contributions of this paper are:

• A general architecture of an LLM-based code-review assis-
tant system (section 3).

• A description of tool calibration and deployment to tens of
thousands of developers (section 4).

• An evaluation of the system (section 5).
• A summary and discussion of lessons learned (section 6).

2 BACKGROUND
AutoCommenter was developed in a large industrial setting at
Google. The modern code review practices at Google are similar to
those of other industrial and open source projects [23].

2.1 Code Review Process
The code review process at Google is well established, change-
based, and tool-assisted. Ivanković et al. [12] and Petrović et al.
[18] provide a detailed summary of the process. Each change to the
codebase must be reviewed by at least one other developer. Every
day, tens of thousands of changes to the codebase go through the
review process and tens of thousands of developers participate in
the process, as both code authors and reviewers.

Authors and reviewers exchange comments through the code
review system, and a review progresses through snapshots of files
affected by the change. Each reviewer comment is attached to a
specific line and column range in a specific file snapshot. To resolve
a comment, the author typically modifies the file in their local copy

Figure 1: Example comment posted by a human reviewer.

and exports a new snapshot for the next round of code review.
When the author and all reviewers are satisfied and no automated
analysis is blocking the merge, the code is merged into the codebase.

The most expensive part of the code review process is the time
spent by code authors and reviewers “shepherding” a change (from
initial coding, through addressing reviewer comments and ensur-
ing all automated analyses pass, to finally merging the change
into the codebase). While the process is optimized with automated
systems analyzing the code before the review (notably automatic
code formatting without human intervention), code reviews still
cost thousands of developer-years per year. Thus, even single-digit
percentage savings translate into significant business impact.

2.2 Best Practices
A best practice is a specific use of programming language that is
considered superior, and a best practice document describes how
it should be applied and what benefits it brings. Best practice URL
refers to a best practice document or specific section therein, and
best practice violation refers to a specific piece of code that does not
adhere to a best practice, but can be changed to do so. If clear from
context, we use the terms URL and violation to refer to best practice
URL and best practice violation, respectively.

Google’s central code repository contains code in many lan-
guages, with C++, Java, Python and Go exceeding 100 million lines
each [19]. For 15 different languages there are formal style guides
readily available to all developers. Many of these languages have
additional language primers, documentation for core libraries, and
tip-of-the-week style newsletters. While these materials are not
as strictly enforced as style guides, they are frequently referenced
in code reviews. Some languages boast hundreds of pages of such
documentation. Both code authors and reviewers are expected to
verify that the code follows all best practices.

A formal mechanism called “readability”, introduced more than
a decade ago, ensures that best practices are followed consistently.
Dedicated style experts in a given language, called “readability
mentors”, guide inexperienced developers towards proficiency in
the language [23]. Readability mentors commonly summarize a
best practice in a few sentences and at the end of the comment
include a URL for the change author as a reference. Figure 1 shows
an example of a comment posted by a readability mentor.

AI-Assisted Assessment of Coding Practices in Modern Code Review AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Training and fine-tuning (on demand)

WorkerWorkerWorkers

Source
repository

Comment
storage

Scheduler
Relevant

code
comments

WorkerWorkerWorkers
Examples
(temporal

splits)

WorkerWorkerTPU pods

Tensorboard

Model
checkpoints

Input/target
format

Large-scale preprocessing (periodic) Dataset curation (on demand)

Figure 2: Architecture of the model-training pipeline.

The readability process has some drawbacks. For authors, it in-
creases development time due to additional review rounds. For read-
ability mentors, it can become a monotonous and time-consuming
task. It requires mastering hundreds of evolving best practices, in-
cluding the identification and deprecation of outdated rules, and
documenting them (with relevant links) in the code-review sys-
tem. Additionally, it requires tracking, sometimes through multiple
iterations, ensuring that all violations have been remedied.

3 APPROACH
In response to the challenges described sections 2.1 and 2.2, we
developed AutoCommenter, a code analysis tool that automatically
detects best practice violations. It aims to provide timely feedback
for code authors and to alleviate the need for manual best-practice
reviews, thereby allowing reviewers to focus on code functionality.

3.1 Model and Task Definition
Automating best practice analysis requires a model that can rep-
resent source code, pinpoint violation locations, and identify the
violated best practice. We target a text-to-text transformation using
a traditional transformer approach based on T5, using T5X [22].

The best practice analysis is one task in a multi-task large se-
quence model. In addition to the standard pretraining task for T5,
span denoising (predicting masked tokens), other tasks used to
train this model include code-review comment resolution, next
edit prediction, variable renaming, and build-error repair [9]. The
training corpus consists of over 3 billion examples, of which the
best practice analysis dataset contributes about 800k examples. The
model was trained using the standard cross-entropy loss, typical for
such models, and tuned to maximize the sequence accuracy metric,
predicting the exact target text for each example.

For the best practice analysis, the input to the model is a task
prompt and source code, and the target is a source code location and
a URL for a best practice violation. The task prompt is formatted as a
fixed-text code comment, using the programming language’s appro-
priate commenting style. It describes the task in natural language
and precedes the source code, which is a direct textual representa-
tion of one file. If the input exceeds the model context window, it
is truncated. The location is a byte offset in the source code, and
the URL references the violated best practice. A domain specific
language defines the target format, and a special case is the “empty”
target, if there are no violations. In addition to the target, the model
outputs a confidence score ranging from 0 to 1.

Consider the following input/target example for the Go language.
Input

/ / [∗] Task : Check l anguage b e s t p r a c t i c e s .
/ / Package a d d i t i o n p r o v i d e s Add
package a d d i t i o n

/ / R e t u rn a sum
func Add (va lue1 , v a l u e2 in t) in t {

return va lu e1 + va lue2
}

Target
INSERT 153 COMMENT h t t p s : / / go . dev / doc / comment # fun c

The first line of the input is the fixed-text task prompt; the rest is
the source code. The target gives the location (byte offset 153 corre-
sponds to the start of the Add function) and a go.dev URL, pointing
to the exact part of the Go language style guide that the function
comment violates (in this case, the usual practice of starting a com-
ment with the function name). Note that the target may contain no,
one, or multiple (concatenated) location-URL pairs, depending on
the number of violations in the source code.

3.2 Model Training
Figure 2 shows the architecture of the model-training pipeline,
which consists of three parts. We split dataset creation into two
steps (preprocessing and curation) because the first step is signifi-
cantly more expensive as it operates on a much larger amount of
data. The output of the preprocessing step is agnostic to the model’s
input/target representation. This separation improves feature ve-
locity by enabling quick iterations on example representations and
other example-level adjustments. The preprocessing step uses a
fault-tolerant scheduling system and periodically extracts relevant
code comments to ensure that new data is readily available.

3.2.1 Large-scale preprocessing. The training examples are created
from real code review data, but not all code comments are suitable
for model training. Therefore, the preprocessing step, identifies
relevant code comments—human authored comments that contain
a URL pointing to a best practice document. For each comment,
the preprocessing step then collects the corresponding source code
and relevant metadata, including the comment’s location in the
source code and its creation time. The output of this step is a set
of relevant code comments, each with all the data necessary for
curating examples for model training.

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Manushree Vijayvergiya et al.

3.2.2 Dataset curation. Dataset curation is a single, on-demand
processing step, implemented as a Beam1 pipeline. It converts each
relevant code comment, based on the input/target format described
in section 3.1, into the standard TensorFlow Example data structure.

3.2.3 Training and fine-tuning. The curated examples are used
directly for model training and evaluation. We use the T5X frame-
work [22] on a fleet of TPUs, store the model checkpoints every
1000 steps, and use Tensorboard for monitoring the training.

3.3 Model Selection
Two intrinsic evaluations on historical data inform our selection of
a model checkpoint, confidence thresholds, and a decoding strategy.
First, an evaluation on the validation and test datasets provides
estimates of precision and recall on a per-file basis. Second, an
evaluation on full historical code reviews provides an estimate of
the total number of comments per code review, indicating how
often developers would interact with AutoCommenter.

3.3.1 Evaluation on Validation and Test Datasets. We temporally
split the dataset to ensure that the model has not been trained on
future code-review snapshots of the code comments in the valida-
tion and test datasets. In our dataset, 85% of files have exactly one
relevant code comment, 11% have two, and 4% have three or more.
We define a prediction to be correct if the predicted code location(s)
and URL(s) match the expected values, regardless of order.

Recall that the model provides a confidence score for each pre-
diction, which introduces another parameter: a prediction can be
suppressed if its confidence score is below some threshold 𝑡 . We
define 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 as the number of correct predictions whose confi-
dence score is greater than 𝑡 divided by the number of all predictions
whose confidence score is greater than 𝑡 ; we define 𝑅𝑒𝑐𝑎𝑙𝑙𝑡 analo-
gously. These definitions allow us to estimate how many (in)correct
results would be shown to a user, as a function of 𝑡 . 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 and
𝑅𝑒𝑐𝑎𝑙𝑙𝑡 are used for model checkpoint comparisons during training.

While this evaluation avoids data leakage and allow us to auto-
matically evaluate model performance, it has a limitation: while
it is reasonable to assume that the human comments for a given
code-review snapshot are correct, they are not exhaustive. In other
words, it is possible that the code in a given code-review snapshot
could be improved according to multiple best practices, but a hu-
man reviewer did not post comments (with URLs) for all of them.
This can happen for several reasons:

• Missing references: A reviewer may comment on an issue,
but did not include a URL as a reference.

• Selective commenting: A reviewer may comment on an issue
once, expecting the author to apply a fix throughout.

• Varied expertise or focus: A reviewer may not be familiar with
all best practices, or simply choose not to comment on an
issue in the context of a given code review (e.g., focusing
only on changed code).

While most files in our dataset have only one relevant comment,
anecdotal evidence based on manually inspecting “incorrect” pre-
dictions suggests that multiple best-practice comments are typically
possible due to the reasons stated above. Given that our ground-
truth data is incomplete, our precision and recall measures are noisy.
1https://beam.apache.org/

Therefore, we employ a complementary evaluation, described next,
to increase confidence in overall model performance.

3.3.2 Evaluation on Full Historical Code Reviews. To accurately
gauge potential comment volume in a live setting, we evaluate
AutoCommenter on a set of historical code reviews, using a specific
model checkpoint and threshold. The predicted comments are not
retroactively posted in the code review system, but rather logged
in a database for analysis. This allows us to estimate the expected
posting frequency—both at per-file and per-code-review granularity.
Because developers interact with AutoCommenter for an entire
set of code changes subject to code review, this evaluation is an
important step before production deployment. As an added benefit,
this step allows for further optimizations and assessment of posting
frequencies for different user groups, programming languages, etc.

3.4 Inference Infrastructure
The core of AutoCommenter is a central best practice analysis ser-
vice. This service takes as input one or more source files for analysis.
For each file, it constructs a model input (section 3.1), encodes it
in the standard TensorFlow Example data structure, and queries
the model. The model itself is served by a model service that uses
TensorFlow’s Example data structure as a domain agnostic input-
output format. Finally, the best practice analysis service performs
a series of filtering steps (section 4), which suppress low-quality
predictions, and returns the remaining predictions.

3.5 IDE and Code Review Integration
Developers interact with AutoCommenter’s analysis service in
two ways—directly through an IDE plugin, or indirectly through
the code review system. The code review system is used by all
developers at Google, and the IDE by almost all of them.

AutoCommenter’s comments appear in the IDE as diagnostics
markedwith a blue curly underline, spanning the relevant code snip-
pet. Hovering over the underlined code reveals the full comment
with a concise summary of the best practice, including a clickable
link to the relevant best practice document. This embedded infor-
mation streamlines the workflow for developers by eliminating the
need to switch between the IDE and a web browser for unfamiliar
best practices. Since comments in the IDE need to be generated in
real-time, we aim to generate comments with sub-second latency.

In the code review system, AutoCommenter runs after each
update (i.e., on each new code-review snapshot), automatically
posting comments if it detects any violations. Comments produced
by automated tools are visually similar to comments produced by
humans, but have a differently colored background.

Figure 3 shows an example comment generated and posted by
AutoCommenter in the code review system. Note the thumbs up
and thumbs down buttons (right), which authors and reviewers can
click if they find a comment particularly useful or not. Also note
the “Please fix” button (left), which is visible to reviewers. If clicked,
a new comment is generated indicating that the reviewer believes
the comment is significant and must be addressed before the code
is merged into the codebase. These feedback buttons are standard
in the code review system, present on all comments generated by
automated tools (e.g., [7, 13]), and provide a signal for a tool’s user
acceptance. The IDE provides a similar feedback mechanism.

https://beam.apache.org/

AI-Assisted Assessment of Coding Practices in Modern Code Review AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Figure 3: Example comment posted by AutoCommenter.

4 DEPLOYMENT
We deployed AutoCommenter to all developers at Google over a
period of time between July 2022 and October 2023:

• until Jul. 2022—teamfooding: this paper’s authors.
• Jul. 2022—early adopters: around 3 thousand volunteers.
• Jul. 2023—A/B experiment: about half of all developers.
• since Oct. 2023—general availability: all developers.

Note that due to industrial confidentiality reasons we are unable
to disclose absolute numbers of code reviews, developers, files,
comments, or distribution of duration of code reviews. We report
on relative measures, where appropriate, and relevant trends.

We continuously evaluated and improved the performance of
AutoCommenter, using an iterative refinement approach:

• Evaluation on historical data (section 3.3) to get directional
insight into howwell the model does at the task and to define
thresholds and select a decoding strategy.

• Monitoring and analysis of user interaction and direct feed-
back through feedback buttons and issue reports.

• Targeted human evaluation based on patterns observed dur-
ing other evaluation steps.

Figure 4 shows the ratio of positive to negative developer feed-
back on posted code review comments and IDE diagnostics over
time. The dashed line shows the total count of feedback clicks de-
velopers provided per month. As is expected, this count is much
lower during the early-adopter stage. Additionally, the volatility is
higher in this stage because we actively refined AutoCommenter.

Recall the three feedback buttons within the code review system
(figure 3), which allow developers to express positive and negative
sentiment about a posted comment. We consider comments with a
thumbs up or “Please fix” as positive, and comments with a thumbs
down as negative; we define the useful ratio as the ratio of positive
comments to all comments with feedback.

The remainder of this section describes specific observations
and corresponding refinements that we made during deployment.

4.1 Selecting Threshold and Decoding Strategy
4.1.1 Threshold. During initial deployment we wanted to carefully
manage the trust developers had in AutoCommenter and started
with a high confidence threshold of 𝑡 = 0.98. We manually sampled

Figure 4: Developer feedback throughout deployment.

several hundred results and observed that around 80% of predictions
below the threshold were still correct—that is, the false-negative
rate was very high at 𝑡 = 0.98. Additionally, we observed that
predictions in Python showed a significantly different distribution
of confidence scores, which were disproportionately impacted by
thresholding. We conjecture that the training dataset composition
(number of distinct URLs and URL frequencies) and specificity of the
best practice documents are reasons, but leave a deeper investiga-
tion to future work. An attempt to deploy per-language thresholds
proved ineffective as a single threshold per language still did not
adequately capture the model’s ability to correctly predict hundreds
of diverse best practices. This led to a lack of diversity in predicted
URLs as the model tended to produce higher scores for some URLs
vs. others, irrespective of correctness. These observations led to the
first major change to AutoCommenter: per-URL thresholds com-
puted based on the intrinsic evaluation on the validation dataset.

4.1.2 Decoding. An evaluation using per-URL thresholds with
greedy decoding on full historical code reviews revealed that Auto-
Commenter detects violations in 6% of all changed files. However,
80% of comments would have been posted on lines of code not
modified by the author. Developers typically do not take action on
unchanged code. Consequently, AutoCommenter filters generated
comments on unchanged lines of code, reducing the ratio of com-
ments in changed files to 1.3%. In order to increase this ratio, we
experimented with different decoding strategies: greedy (default),
beam search, top-k, and top-p sampling. We settled on beam search
(generating 𝑛 = 4 potential responses), which tripled the posting
frequency to 3.9%. It also yielded a substantially higher URL diver-
sity: the 10 most-frequently posted URLs accounted for 41% of all
comments, compared to 80% for greedy search.

Latency is another important aspect when choosing a decoding
strategy for deployment. While beam search increased the posting
frequency and diversity, inference became noticeably slower (me-
dian latency of 2 seconds). Given that this latency is prohibitive
for interactive use in the IDE, we ultimately decided to use beam
search for the code review system and greedy search for the IDE.

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Manushree Vijayvergiya et al.

4.2 Suppressing Outdated Best Practices
After launching AutoCommenter to around 3 thousand voluntary
first-adopters, we noticed a large number of issues being filed by
users within a few days. Many of these corresponded to a single
URL2, which describes best practices related to Python imports.
However, the canonical source for some type names had changed
in Python 3.9, and the best practice had also changed in early 2022.
Since our training data stretches before 2022, it contained a num-
ber of best practice comments that were no longer applicable. We
realized that this is a recurring pattern: as languages evolve, or
new libraries are introduced, best practices evolve as well. One
way of mitigating the problem is to filter out such data (whenever
a rule changes), and retrain the model. This is however time and
resource-consuming: it requires full data regeneration, model train-
ing, evaluation, and rollout. In the meantime, the “outdated” model
needs to be either switched off, causing downtime of the system, or
affected predictions need to be suppressed. Otherwise, the system
could quickly lose developer trust. We opted for suppression of spe-
cific best-practice predictions, using conditional filtering (matching
regular expressions on the source code) for two reasons. First, it
can be dynamically deployed and immediately applied. Second, it
allows for granular filtering of predictions.

4.3 Independent Rating of Selected Comments
After several months of early usage, we observed that the useful
ratio plateaued at around 54%. To understand the reasons, iden-
tify areas for improvement, and prepare for a wider deployment,
we conducted an independent human rating study in April 2023,
analyzing a sample of around 370 posted comments that received
developer feedback during our first-adopters deployment.

To gather diverse perspectives on the usefulness of comments we
recruited 15 raters—developers from partner teams. We asked them
to rate AutoCommenter’s comments that received explicit user
feedback. We did not show the original user feedback to the rater, to
avoid biasing their evaluation. The raters assessed each comment’s
usefulness based on the linked best practice and the surrounding
code. We instructed them to focus on comment correctness, but also
whether the comment would be actionable to them as an author
(e.g., would they resolve a comment that is technically correct but
does not seem worth resolving in a specific instance). They were
encouraged to provide free-form feedback on each comment.

The useful ratio from the rater evaluation was 60%, slightly
higher than the 54% from the developer feedback on the same
comments, but well below our target of 80% for wider deployment.

The most interesting finding from this study was that there were
clear patterns of not useful comments. Here are some examples:

Several topics or complex topic: For example, one URL points
to a section that describes multiple guidelines for interacting with
the Python linter, including cases where it often triggers and ways
to suppress it. An author may struggle to understand what specific
guideline a posted comment is referring to and how to resolve it.
Similarly, the guidance on writing good function documentation in
C++ is a full page of dense text. Raters frequently noted a disconnect
between a best practice (and AutoCommenter’s concise summary)
and the actual code, even when it contained a relevant violation.
2https://github.com/google/styleguide/blob/gh-pages/pyguide.md#22-imports

Importance of high-quality summaries: Raters often found
that AutoCommenter’s summary, which was generated by scraping
the document source and sometimes missing, failed to adequately
explain the relevance of the cited guideline to the comment/code.

Subjective and potentially contentious topic: One example
is avoiding flags in library code. Flags can cause problems when
used in libraries, but some libraries are specifically designed to
have many features configurable via flags. Additionally, legacy code
may not adhere to this guideline and reviewers will not enforce it.
The model did not learn these nuances and sometimes predicted a
violation when an author added a new flag to an existing library.

Systematic model error for some guidelines: One interest-
ing example is a guideline that promotes the use of the member
function push_back over emplace_back for C++ vectors when both
functions can be used with the same arguments to achieve the same
effect. The model had learned to predict this, but it would also
predict it in cases where emplace_back is warranted, and also when
an unrelated type had a member function called push_back.

Correct but low-value comments: A missing period at the
end of a sentence in a code comment is often allowed by human
reviewers. While technically correct, asking the author to go back
to their IDE and fix the issue may provide net negative value.

The insights from the rater study informed two changes to Auto-
Commenter. First, the rater study identified 17 non-actionable URLs,
whose suppression increased the historical useful ratio from 54% to
66% on developer feedback, and from 60% to 74% on rater feedback.
We further analyzed comments linked to similar, unrated URLs
and suppressed an additional 5. Second, we reviewed and manually
updated summaries for all frequently posted URLs. Together, these
changes were sufficient to reach our target useful ratio of 80% for
the next stage of deployment.

4.4 A/B Experiment
In July 2023, we deployed AutoCommenter to about half of all devel-
opers in the context of an A/B experiment. We randomly assigned
developers to a an experiment group (AutoCommenter enabled)
and a control group (AutoCommenter disabled). We randomized
based on the last few digits of the SHA256 hash of the developers
email address, and we verified that both groups did not differ in
size and composition, including distribution of tenure, seniority,
programming languages and business units. We also confirmed that
none of the variables measured during the experiment differed be-
tween the control and the experiment group before the experiment
began. The comment posting frequency during the experiment was
in line with expectations (section 4.1).

We did not detect any statistically significant change in any
of the following: total duration of code reviews, time developers
actively spent on the code review, the number of comment-response
iterations between the author and the reviewer. We did, however,
detect a slight improvement in coding speed. We conjecture that
the reduction in context switches to documentation leads to this
positive effect. We leave a deeper investigation for future work.
Based on the results, we concluded that there are no adverse effects,
and deployed AutoCommenter to all developers in October 2023.

AI-Assisted Assessment of Coding Practices in Modern Code Review AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Figure 5: Cumulative distribution of comments per URL for
the automated comments generated by AutoCommenter in
production and human comments in the training data.

5 EVALUATION
Based on the useful ratio and user feedback gathered since March
2023, we conclude that developers are generally satisfied with the
comments produced by AutoCommenter. We continuously refine
our dataset preparation, thresholds, URL suppression and summa-
rization by analyzing user feedback, to ensure that AutoCommenter
delivers high positive impact on the developer workflow.

Beyond developer satisfaction, with several months in wide re-
lease to all of Google, we evaluated three additional aspects of
AutoCommenter’s performance:

(1) Comment resolution: How often do developers modify
their code to resolve AutoCommenter’s posted comments?

(2) AutoCommenter vs. human comments: How well do
AutoCommenter’s comments cover the best practice docu-
ments that human reviewers reference in their comments?

(3) AutoCommenter vs. linters: To what extent does Auto-
Commenter’s output go beyond the capabilities of traditional
static analysis tools?

5.1 Comment Resolution
Developers rarely give explicit feedback on AutoCommenter’s com-
ments by clicking the thumbs up/thumbs down buttons in the code
review system and IDE, and the “Please fix” button in the code
review system (figure 3): about 10% of automated comments in the
code review system and 2% of diagnostics in the IDE received ex-
plicit feedback, which is comparable to other automated analyses at
Google. At the same time, developers hover over approximately 50%
of the AutoCommenter’s IDE diagnostics, and prior work showed
that developers often resolve automated comments without explicit
feedback [18]. To assess how often developers resolve AutoCom-
menter’s comments, we conducted an offline analysis, estimating
the ratio of comments resolved by subsequent code changes.

To analyze comment resolution, we extracted historical changes
focused on files with automated comments from AutoCommenter.
For each, we extracted the initial snapshot where the comment was
posted and the snapshot that the developer eventually merged into
the codebase. Each comment spans a specific range of lines. We
used an automated AST-based line mapping approach [18] between
these snapshots, to identify comments that the model originally

Code idioms

Documentation

Formatting

Language

Naming

0 5 10

Number of distinct URLs

Linter Yes No/Partially

Figure 6: The top-50 most frequently predicted URLs cate-
gorized into types. Linter indicates whether a linter that de-
tects a violation exists or can easily be built.

predicted on the first snapshot, but did not predict on the merged
snapshot. Such pairs of snapshots indicated that a comment may
have been resolved, but it is possible that unrelated code changes
could have led to a specific comment no longer being predicted.

An automated analysis of 6000 snapshot pairs revealed that in
50% of cases the comment was absent from the submitted snapshot
on the lines it was originally posted. We manually inspected a
random sample of 40 such pairs. We found that in 80% of cases, a
change made by the author directly resolved the issue described
by the posted comment. Therefore, we estimate that the comment-
resolution rate is about 40%, which is significantly larger than the
ratio of comments with explicit positive feedback to all comments.

5.2 AutoCommenter vs. Human Comments
Figure 5 compares the cumulative distribution of comments (per
unique URL to a best practice document) for the automated com-
ments generated by AutoCommenter in production and human
comments in the training data. The x-axis is the rank of the URL
when all URLs ever used in automated comments are sorted by
frequency. For example, the most frequently used URL has rank 1,
and it accounts for 9.9% of all automated comments. This same URL
appeared in 4.3% of the human created comments in the training
data. In total, AutoCommenter has created comments for 330 dis-
tinct URLs. The set of URLs used by AutoCommenter covers 68%
of historical human comments with a best practice URL. This is a
good result: it demonstrates that AutoCommenter is not focusing
on obscure best practices that are rarely referenced by reviewers.

On the other hand, despite utilizing beam search, URL diversity
remains relatively low. The top-85 URLs make up 90% of comments
created by AutoCommenter. The same set of URLs cover 35% of
human comments with best practice URLs. Improving URL diver-
sity and coverage of best practices in automated comments while
maintaining accuracy and low latency is one of our top priorities.

5.3 AutoCommenter vs. Linters
To understand to what extent AutoCommenter provides value be-
yond linters that can efficiently and precisely check some of the
best practices, we sampled the top-50 most frequently predicted
violations—that is, the top-50 URLs in figure 5. For each sampled

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Manushree Vijayvergiya et al.

URL, we inspected its best practice document and determined (1) the
best-practice type (section 1) and (2) whether a linter that detects a
corresponding violation exists or can be easily built. Specifically,
three authors, each with over 10 years of experience in building
static analysis tools, read the documentation and independently
categorized the URLs. There were no disagreements on the best-
practice type, but there were disagreements on whether a linter
can be easily built for about 15% of URLs. The three authors re-
solved these disagreements through majority vote and discussion.
Disagreements stemmed from ambiguous best practices, and those
with multiple guidelines. For example, while checking the pres-
ence of code documentation is relatively straightforward, reasoning
about justified exceptions and clarity of content may not.

Figure 6 shows the distribution of the 50 sampled URLs, broken
down by type and whether violations can be detected by a linter.
For 33/50 (66%) of these best practices, violation detection is beyond
the scope of traditional static analysis.

6 LESSONS LEARNED
Based on our experience developing and deployingAutoCommenter,
we summarize a few key lessons learned:

• Complementing traditional analyses: AutoCommenter’s
LLM-backed approach generates comments for 68% of best
practices frequently referenced by human reviewers. Many
of these are out of scope for traditional static analyses.

• Intrinsic evaluation vs. real-world performance: Intrin-
sic evaluations and real-world performance can diverge sig-
nificantly: our intrinsic evaluation, using a dataset of real-
world human comments together with a state of the art
model architecture and training process, indicated a promis-
ing model, but our extrinsic evaluations and system improve-
ments proved essential for a successful deployment.

• Monitoring user acceptance is critical: Even a few nega-
tive user experiences can erode trust in an automated system.
Continuously monitoring and analyzing real-world feedback
was crucial in detecting such instances and identifying reme-
dies. In the case of AutoCommenter, a simple suppression
mechanism was sufficient to strongly improve user accep-
tance to over 80% without major sacrifices in efficacy.

7 RELATEDWORK
Johnson [15] introduced the C linter almost 50 years ago in 1977. In
those 50 years, a considerable body of research on automated static
analysis was produced: a recent literature review by Heckman and
Williams [10] identified 17,571 papers. Many studies explore how
developers interact with static analysis. Johnson et al. [14] explore
challenges developers face when trying to use static analysis. The
results of their study highlights the importance of good integration
into existing developer workflows and the importance of develop-
ing and maintaining trust in the tool. Vassallo et al. [27] explore
how developers interact with static analysis in different contexts,
including coding and code review. They too find that integration
into existing workflows plays a major role in developers willing-
ness to use the tools and that high quality of results is extremely
important. Beller et al. [6] studied usage of static code analysis in a
large number of open source projects. Among other findings, they

highlight that how automated analysis is and should be used varies
based on the programming language.

In contrast, using machine learning for code analysis is a compar-
atively new and less understood field. A number of recent publica-
tions (e.g., Hong et al. [11], Li et al. [16], Li et al. [17], Thongtanunam
et al. [24], Tufano et al. [25], and Tufano et al. [26]) report on model
evaluations and propose tools for automated code review. While
these models and the review comment generation task are very sim-
ilar to the model presented in this paper, evaluations largely focused
on historical datasets. As discussed in section 3.3.1 an intrinsic eval-
uation on only historical comments is somewhat limited and can
sometimes fail to predict real-world performance. Another recent
publication by Frömmgen et al. [9] presents an evaluation of a live
system, but for the opposite task: creating code from comments
rather than comments from code.

8 CONCLUSION
Verifying that code adheres to best practices is a common task in
modern code review processes. While some best practices can be
automatically verified with traditional tools such as linters, many
require the knowledge and judgement of experienced developers,
which requires time and effort.

This paper reports on our experience developing, deploying, and
evaluating AutoCommenter, an LLM-backed code review assistant
system. Specifically, it lays out the entire process from task and
model design, over intrinsic evaluations and system calibrations,
to a staged roll out and end-user evaluation.

The evaluation results show that it is feasible to develop an
end-to-end system with capabilities well beyond traditional tools
while achieving a high degree of end-user acceptance. These results
are a promising first step towards the deployment of sophisticated
code-review assistants and automated code reviews.

Our priority was to ensure a positive developer experience by
designingAutoCommenter to have very high precision.While recall
was not the primary focus, we recognize its significance and plan
to explore what changes in the model and system architecture can
improve recall. For example, the model we used in 2022 was state of
the art at the time. However, it has a limited context window of 2048
tokens which suffices for only around 200 lines of code. Current
state of the art models have context windows of tens of thousands of
tokens during training and over a million tokens during inference.
This leap opens up opportunities for new features and significant
improvement in existing ones.

9 ACKNOWLEDGEMENTS
This work is the result of years of collaboration between teams in
Google Core Systems and Google DeepMind.We are grateful for the
support and advice of all our team members and leadership, includ-
ing Alberto Elizondo, Alexander Frömmgen, Ballie Sandhu, Chandu
Thekkath, Chris Gorgolewski, David Tattersall, Ilya Cherny, Jacob
Austin, Katja Grünwedel, Kristóf Molnár, Lera Kharatyan, Luka Ri-
manić, Madhura Dudhgaonkar, Marc Brockschmidt, Marcus Revaj,
Maxim Tabachnyk, Nina Chen, Niranjan Tulpule, Nitya Ramani,
Paige Bailey, Pavel Sychev, Pierre-Antoine Manzagol, Quinn Madi-
son, Roger Fleig, Satish Chandra, Savinee Dancs, Stoyan Nikolov,
Subhodeep Moitra, and Vaibhav Tulsyan.

AI-Assisted Assessment of Coding Practices in Modern Code Review AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] 2024. Google Style Guides. https://google.github.io/styleguide/. Accessed:

2024-03-15.
[2] 2024. Linux kernel coding style. https://www.kernel.org/doc/html/v4.10/process/

coding-style.html. Accessed: 2024-03-15.
[3] 2024. PEP 8 – Style Guide for Python Code. https://peps.python.org/pep-0008/.

Accessed: 2024-03-15.
[4] 2024. Rust Style Guide. https://doc.rust-lang.org/nightly/style-guide/. Accessed:

2024-03-15.
[5] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[6] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source soft-
ware. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 470–481.

[7] Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko
Ivanković, and René Just. 2023. MuRS: Mutant Ranking and Suppression using
Identifier Templates. In Proceedings of the Symposium on the Foundations of
Software Engineering (FSE). 1798–1808.

[8] M. E. Fagan. 1976. Design and code inspections to reduce errors in program
development. IBM Systems Journal 15, 3 (1976), 182–211. https://doi.org/10.1147/
sj.153.0182

[9] Alexander Frömmgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan,
Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-AntoineManzagol, Marcus
Revaj, Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish
Chandra, and Petros Maniatis. 2024. Resolving Code Review Comments with
Machine Learning. In International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP).

[10] Sarah Heckman and Laurie Williams. 2011. A systematic literature review of
actionable alert identification techniques for automated static code analysis.
Information and Software Technology 53, 4 (2011), 363–387. https://doi.org/10.
1016/j.infsof.2010.12.007 Special section: Software Engineering track of the 24th
Annual Symposium on Applied Computing.

[11] YangHong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida
Aleti. 2022. Commentfinder: a simpler, faster, more accurate code review com-
ments recommendation. In Proceedings of the Joint Meeting of the European Soft-
ware Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE). 507–519.

[12] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code
Coverage at Google. In Proceedings of the Joint Meeting of the European Soft-
ware Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE). 955–963.

[13] Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kali-
novčić, René Just, and Gordon Fraser. 2024. Productive Coverage: Improving
the Actionability of Code Coverage. In International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP).

[14] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[15] Stephen C Johnson. 1977. Lint, a C program checker. Bell Telephone Laboratories
Murray Hill.

[16] Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang,
and Chun Zuo. 2022. Auger: Automatically generating review comments with

pre-training models. In Proceedings of the Joint Meeting of the European Soft-
ware Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE). 1009–1021.

[17] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
2022. Automating code review activities by large-scale pre-training. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (<conf-loc>, <city>Singapore</city>,
<country>Singapore</country>, </conf-loc>) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 1035–1047. https://doi.org/10.1145/
3540250.3549081

[18] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2023. Please fix
this mutant: How do developers resolve mutants surfaced during code review?. In
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 150–161.

[19] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines
of Code in a Single Repository. Communications of the ACM (CACM) 59 (2016),
78–87. http://dl.acm.org/citation.cfm?id=2854146

[20] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary Peer Review in Action: Lessons from Open
Source Development. IEEE Software 29, 6 (2012), 56–61. https://doi.org/10.1109/
MS.2012.24

[21] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 202–212. https://doi.org/10.1145/
2491411.2491444

[22] Adam Roberts, Hyung Won Chung, Gaurav Mishra, Anselm Levskaya, James
Bradbury, Daniel Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, et al. 2023. Scaling up models and data with t5x and seqio. Journal
of Machine Learning Research 24, 377 (2023), 1–8.

[23] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
181–190.

[24] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamtha-
vorn. 2022. Autotransform: Automated code transformation to support modern
code review process. In Proceedings of the International Conference on Software
Engineering (ICSE). 237–248.

[25] Rosalia Tufano, Ozren Dabić, AntonioMastropaolo, Matteo Ciniselli, and Gabriele
Bavota. 2024. Code Review Automation: Strengths and Weaknesses of the State
of the Art. IEEE Transactions on Software Engineering (TSE) (2024).

[26] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using pre-trained models to boost code
review automation. In Proceedings of the International Conference on Software
Engineering (ICSE). 2291–2302.

[27] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C Gall, and Andy Zaidman. 2020. How developers engage with static analysis
tools in different contexts. Empirical Software Engineering 25 (2020), 1419–1457.

[28] T. Winters, T. Manshreck, and H. Wright. 2020. Software Engineering at Google:
Lessons Learned from Programming Over Time. O’Reilly Media. https://books.
google.ch/books?id=TyIrywEACAAJ

Received 2024-04-05; accepted 2024-05-04

https://google.github.io/styleguide/
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://peps.python.org/pep-0008/
https://doc.rust-lang.org/nightly/style-guide/
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1145/3540250.3549081
http://dl.acm.org/citation.cfm?id=2854146
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2491411.2491444
https://books.google.ch/books?id=TyIrywEACAAJ
https://books.google.ch/books?id=TyIrywEACAAJ

	Abstract
	1 Introduction
	2 Background
	2.1 Code Review Process
	2.2 Best Practices

	3 Approach
	3.1 Model and Task Definition
	3.2 Model Training
	3.3 Model Selection
	3.4 Inference Infrastructure
	3.5 IDE and Code Review Integration

	4 Deployment
	4.1 Selecting Threshold and Decoding Strategy
	4.2 Suppressing Outdated Best Practices
	4.3 Independent Rating of Selected Comments
	4.4 A/B Experiment

	5 Evaluation
	5.1 Comment Resolution
	5.2 AutoCommenter vs. Human Comments
	5.3 AutoCommenter vs. Linters

	6 Lessons learned
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

