
Using Conditional Mutation to Increase the Efficiency of
Mutation Analysis

René Just
Department of Applied
Information Processing

Ulm University
rene.just@uni-ulm.de

Gregory M. Kapfhammer
Department of Computer

Science
Allegheny College

gkapfham@allegheny.edu

Franz Schweiggert
Department of Applied
Information Processing

Ulm University
franz.schweiggert@uni-ulm.de

ABSTRACT
Assessing testing strategies and test sets is a crucial part
of software testing. Mutation analysis is, among other ap-
proaches, a suitable technique for this purpose. However,
compared with other methods it is rather time-consuming
and applying mutation analysis to large software systems is
still problematic. This paper presents a versatile approach,
called conditional mutation, which increases the efficiency
of mutation analysis. This new method significantly reduces
the time overhead for generating and executing the mutants.
Results are reported for eight investigated programs up to
373,000 lines of code and 406,000 generated mutants. Fur-
thermore, conditional mutation has been integrated into the
Java 6 Standard Edition compiler. Thus, it is widely applica-
ble and not limited to a certain testing tool or framework.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Verification

Keywords
Mutation Analysis, Instrumentation, Compiler-integrated

1. INTRODUCTION
Software testing is an essential part of the software de-

velopment process. Since software systems are growing in
size and complexity, tests should be automated in order to
achieve sufficient test results. Automating software tests is
a challenging task which concerns not only the automated
processing of test cases but also the generation of input val-
ues and the evaluation of the resulting outputs by means of
an oracle or partial oracle [2, 3]. Considering these aspects,
it is clear that an evaluation of the input values as well as
the (partial) oracles is necessary in order to achieve reliable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’11, May 23-24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0592-1/11/05 ...$10.00.

results from testing. Mutation analysis is among other ap-
proaches suitable for this purpose [1]. However, applying
mutation analysis to large software systems is problematic
since it is a time-consuming technique.

This paper describes and evaluates conditional mutation,
an approach to increase the efficiency of mutation analy-
sis. It is based on transforming the abstract syntax tree
(AST) to collect all mutants in conjunction with the origi-
nal program within the resulting assembled code. The name
is derived from the conditional statements and expressions
which are inserted to encapsulate the mutants. In com-
parison to prior approaches (e.g., [12, 19, 21]) it is more
general because it operates at the source code level on ex-
pressions as well as statements. Furthermore, these AST
transformations can be integrated into the compiler.

In consideration of this compiler-integrated approach, the
runtime to generate and compile the mutants is reduced to
a minimum. For instance, the total overhead for compiling
406,000 mutants for the largest investigated program, namely
the aspectj compiler, is only 33% compared with the default
compile time. This time overhead includes the cost of both
mutant generation and compilation and is thus orders of
magnitude less than compiling the mutants individually. In
addition, the time to run the full corresponding test suites
for the instrumented programs is on average only 15% higher
than normal testing time in the worst-case scenario associ-
ated with executing all of the conditional statements and
expressions that support mutation analysis.

The remainder of this paper is structured as follows: Sec-
tion 2 deals with the basics and outlines the challenges asso-
ciated with mutation analysis. Related work is discussed in
Section 3 and our approach is explained afterwards with im-
plementation details in Section 4. Thereafter, an empirical
study with eight software systems is presented to evaluate
the approach and the implementation in Section 5. Finally,
potential threats to validity are discussed in Section 6 and
a conclusion is given in Section 7.

2. MUTATION ANALYSIS
Originally introduced in [4, 7], mutation analysis is a well

known technique for assessing the quality of a given test
suite or testing strategy. In this approach, faults are sys-
tematically seeded into a System Under Test (SUT) and
the corresponding test sets or testing strategies are exam-
ined with respect to their ability to find the injected faults.
These faults are injected methodically, contrary to the clas-
sical approach where error seeding is led by the intuition of
experienced engineers (cf. [13]). Thus, mutation analysis can
be regarded as an unbiased technique.

The way of applying mutation analysis is specified by mu-
tation operators and the resulting faulty versions of the SUT
are referred to as mutants. Examples of mutation operators
are the replacement of variables by constants or swapping
comparison operators in conditions [11, 12]. Generally, mu-
tation analysis is programming language independent but
the mutation operators depend on the chosen language since
they have to cover the corresponding syntax and semantics.
It also has to be pointed out that mutation analysis is not
feasible without appropriate tool support.

Due to the methodical injection of faults, the obtained
mutants are reproducible and the method is applicable for
an arbitrarily selected SUT. According to the basic hypothe-
ses, namely the competent programmer hypothesis and the
coupling effect [15], a mutant contains only one mutation,
thus leading to a large number of mutants when all possible
mutation operators are applied to a large or complex SUT.

If a test case reveals a fault, the corresponding mutant is
said to be killed. Hence, relating the number of all the killed
mutants to the number of generated mutants is an appro-
priate way to measure the quality of the applied test suite.
However, a mutant cannot be killed in certain circumstances.
In fact, when there exists no test case that can detect the
mutant, it is said to be equivalent. Thus, it might be neces-
sary to investigate and remove possibly equivalent mutants
manually. Yet, approaches exist to identify some equivalent
mutants automatically [17, 19]. Since our focus is the effi-
cient automatic generation and execution of mutants, these
techniques are not discussed further in this paper.

3. RELATED WORK
As already mentioned in Section 2, applying all suitable

mutation operators to large or complex implementations
leads to a huge number of mutants, thus having a consider-
able impact on the runtime of mutation analysis. Consid-
ering the computational costs of mutation analysis, several
approaches have been discussed in the literature (cf. [9]).
As noted by Offutt and Untch, all techniques and strategies
aiming at reducing these costs can be related to one of three
categories: do fewer, do smarter, and do faster [18].

Do fewer approaches are sampling and selective tech-
niques that reduce the number of mutants either by decreas-
ing the number of operators or by selecting just a subset of
the generated mutants. Offutt et al. investigated the effec-
tiveness of mutation operators and determined that the mu-
tants generated with a smaller subset of sufficient operators
are almost as hard to kill as the complete set of mutants [16].
Thus, the reduced set of mutation operators can be applied
much more efficiently without a major loss of information.

Do smarter techniques exploit for instance the possi-
bilities of running mutation analysis in a distributed envi-
ronment [5]. Since every mutant is generated independently,
the computation can be parallelized. Another do smarter ap-
proach is weak mutation testing [8] where a mutant is said
to be killed if its internal state, after executing the mutated
code, differs from the original program. Hence, only neces-
sary conditions can be verified by applying weak mutation.
Nevertheless, the minor loss of information is proportionate
to the considerable decrease in time overhead.

Do faster approaches generally aim at improving the
runtime of mutation analysis without using reduction or
parallelization. Considering the conventional way of apply-
ing mutation analysis, every mutant is a copy of the original

program apart from a small syntactical change. According to
that fact, compiling every mutant as an independent source
file is a substantial time overhead during compilation. In or-
der to alleviate the costs of compiling every mutant, DeMillo
et al. proposed a compiler-integrated technique [6]. They
modified a compiler to create patches on the machine code
level. Thus, the original program was compiled just once and
the mutants were created by applying corresponding patches
to the compiled original program. However, the effort to im-
plement or adapt the necessary compiler is significant.

With respect to the Java programming language, which
uses an intermediate language, bytecode transformation is a
similar technique which directly transforms compiled code.
While these modifications are usually faster than source code
transformations since they obviate additional compilation
steps, there are still some drawbacks to this approach. First
of all, the bytecode has been simplified or even optimized
during the compilation process. Therefore, errors might be
injected which could never have been introduced by a pro-
grammer at the source code level. Additionally, all seman-
tic information collected during compilation phases, such as
building and attributing the abstract syntax tree, has to be
gathered redundantly by parsing the bytecode again.

Mutant schemata is another do faster approach which en-
codes all mutations within generic methods and replaces the
original instructions, which shall be mutated, with a call of
the corresponding generic method. Accordingly, the neces-
sary time to compile all mutants is reduced. As described
by Untch et al., “A mutant schema has two components, a
metamutant and a metaprocedure set” [21]. The effective mu-
tation of the metamutant is determined at runtime within
the generic methods by means of appropriate flags. An ex-
ample for mutant schemata is the replacement of the built-in
arithmetic operators by a generic method AOP:

int a = AOP(b, c); ←−[int a = b + c;

AOP can now perform a different arithmetic operation at run-
time which leads to a mutation of the original statement.
Generally, the creation of metamutants can be regarded as
a template-based technique. However, the introduction of
several indirections, when implemented with method calls
[21], implies an additional overhead which may have a sig-
nificant impact on the runtime of the compiled program.

Higher order mutation is, in addition to these three cat-
egories, another approach to generate fewer, but more subtle
mutants. Generating mutants by means of the combination
of two simple mutants, called first order mutants, is referred
to as second order mutation. Accordingly, higher order mu-
tation denotes generally the combination of two or more
first order mutants. The computational costs for second and
higher order mutation are considerably higher because of the
huge number of possible combinations. Nevertheless, recent
work has shown that second and higher order mutants exist
that are harder to kill than the first order mutants of which
they have been generated [10]. Hence, applying these higher
order mutants (HOMs) would provide a better assessment
for mutation analysis. The problem however is to identify
appropriate HOMs in an efficient way. Search-based ap-
proaches seem to be a feasible solution for this problem [10].

4. CONDITIONAL MUTATION
The conventional way of generating mutants, as for in-

stance implemented in MuJava [14], is a result of the work-
flow mentioned in Section 2, with a set of source files and the

convention that each file contains exactly one mutant. This
approach to mutant creation incurs a high time overhead
because it must repeatedly load and compile every mutant
file. In addition, the SUT has to be executed repeatedly with
every mutant to determine the mutation score. In terms of
mutated Java classes, every corresponding class file has to
be loaded to execute the mutated code.

The idea of conditional mutation is to accomplish all mu-
tations in the corresponding source file and more precisely
in the same entity. This means that all mutants are encoded
in the same block or scope and within the same method and
class as the original piece of code. Hence, a conditional mu-
tant is a valid substitution of an arbitrary instruction based
on conditional evaluations and it contains all mutations as
well as the original instruction. Thus, every conditional
mutant preserves the scope and visibility within the AST.

Regarding the example in Listing 1, we can distinguish
between statements and expressions. Intuitively, every pro-
gram instruction which is terminated, for example with a
semicolon, is a statement. An expression is also an instruc-
tion but it represents a value which can be or has to be eval-
uated within a statement, depending on the corresponding
language. For instance, int a = 3 is a statement which can
be used as a single instruction. In contrast, the expression
a * x represents a value and cannot be used as a statement,
in the Java programming language, by adding a terminating
semicolon. So, an expression is always part of a surrounding
statement with the exception of so-called expression state-
ments. These are expressions like method calls, unary incre-
ment/decrement operators, or assignment operators which
can be used either as an expression or a statement.

The conditional mutation approach aims to retain the
basic structure of a program’s AST. This means that un-
necessary local variables, statements, or blocks must not
be inserted. Thus, every expression or statement which is
to be mutated has to be replaced with an appropriate ex-
pression or statement, respectively. Therefore, conditional
statements or conditional expressions are inserted where the
THEN part contains the mutant and the ELSE part the origi-
nal code. The condition for these conditional expressions or
statements may contain an arbitrary expression which deter-
mines when the mutant should be triggered. Regarding mu-
tation analysis, where every mutant should be executed, the
enumeration of all mutants and the insertion of a global mu-
tant identifier e.g., a global variable M_NO is advisable. This
variable makes it possible to dynamically choose the mutant
to be executed. Thus, the expression of the condition is a
comparison of the identifier with the mutant’s number.

When compared with mutant schemata, conditional muta-
tion is more general since it handles expressions and state-
ments. Furthermore, not every mutation operator can be
implemented by the method call approach described in [21].
For instance, if the parameter passing method is call by
value, which is used exclusively in Java, the following re-
placements are not valid because they do not preserve the
semantics of the original statement:

• int a = OP(b); X←−[int a = ++b;

• OP(a,b); X←−[a += b;

These mutations can be represented with conditional mu-
tants since they exist in the same scope as the original ex-
pression. Moreover, while conditional statements can eas-
ily express faults of omission (e.g., a forgotten continue or
break), method calls cannot represent this type of mutant.

1 public int eval(int x){
2 int a = 3, b = 1, y;
3

4 y = a * x;
5

6 y += b;
7

8 return y;
9 }

Listing 1: Method with statements and expressions.

ASSIGN

IDENT

y

BINARY

*

a x

Figure 1: AST subnode of an assignment with a
binary expression as right hand side.

Tail-Recursive Algorithm for Conditional Mutation
The proposed algorithm is applicable for both expressions
and statements but it is explained based on expressions. In
order to apply it to statements, expr has to be replaced by
stmt and a conditional statement CondStmt has to be used
instead of CondExpr within the recursive function (4).

The available mutation operators depend on the expres-
sion to be mutated. Thus, the collectivity of all applicable
operators can be defined as a set for a certain expression:

MOP (expr) = {mop1, · · · ,mopn}, n ∈ N (1)

Considering a binary arithmetic expression, examples for the
mutation operators mopi would be the replacement of the
arithmetic operator or the permutation of the operands.
Next, the syntax tree is traversed and every expression for
which at least one mutation operator exists will be replaced
by an expression expr′:

expr′ ←−[expr, ∀expr : MOP (expr) 6= ∅ (2)

In order to apply the first k mutation operators given by the
set MOP (expr), a recursive algorithm can be defined. In the
base case the expression expr is replaced by a conditional
expression CondExpr which contains the condition cond1,
the mutant, determined by the evaluation of mop1(expr),
and the original expression expr. Any further mutation is
encapsulated within a conditional expression which in turn
contains the result of the previous mutation step.

expr′ = mutk, k ∈ N ∧ k ≤ n (3)

muti =

{
CondExpr(cond1,mop1(expr), expr), i = 1

CondExpr(condi,mopi(expr),muti−1), i > 1
(4)

Since function 4 is tail-recursive it can also be implemented
as an iterative algorithm if the compiler of the correspond-
ing programming language does not support tail-recursion
elimination. By means of an appropriate ordering of the set
MOP (expr) in conjunction with the parameter k, sampling
strategies or selective mutation can be applied. Exemplary
results of using the algorithm are illustrated in Listing 2
and Figure 2. Reconsidering the assignment y = a * x,

1 public int eval(int x){
2 int a = 3, b = 1, y;
3

4 y = (M_NO ==1)? a - x:
5 (M_NO ==2)? a + x:
6 a * x; // original expr
7

8 if(M_NO ==3){
9 y -= b;

10 }else{
11 y += b; // original stmt
12 }
13

14 return y;
15 }

Listing 2: Mutated statement and expression.

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

BINARY

*

a x

Figure 2: Multiple mutated binary expression as
right hand side of an assignment.

1 public int eval(int x){
2 int a = 3, b = 1, y;
3

4 y = (M_NO ==1)? a - x:
5 (M_NO ==2)? a + x:
6 (M_NO ==0 && COVERED (1,2))?
7 a * x : a * x; // original expr
8

9 if(M_NO ==3){
10 y -= b;
11 }else{
12 if(M_NO ==0 && COVERED (3,3)){
13 y += b;
14 }else{
15 y += b; // original stmt
16 }
17 }
18

19 return y;
20 }

Listing 3: Collecting the coverage information with
conditional mutation.

shown in Figure 1, the binary expression which shall be mu-
tated is a subnode of the AST. Hence, just this subnode
is replaced in accordance with the conditional mutation ap-
proach. It has to be pointed out that a possible mutation
operator mopi ∈MOP (expr) for an expression expr ∈ stmt
must not occur in the set MOP (stmt) of the surrounding
statement. For instance, this means that the following re-
placement is invalid according to conditional mutation since
this mutation can be applied at the expression level:

if(M_NO==1){ y = a - x; }else{ y = a * x; }

This constraint is of particular importance for nested ex-
pressions, block statements, and loops because the complete
outer expression or statement should not be duplicated.

Regarding the modified AST in Figure 2, the framed node,
including its children a and x, is the original node of Figure 1.
Therefore, any further transformations on child nodes, such
as replacing x by a constant literal, would be applied ex-
clusively on the framed node in order to have exactly one
mutant in each THEN part. For nested expressions, this condi-
tion is crucial for preventing the algorithm from recursively
applying transformations on already mutated nodes.

Runtime Optimization with Mutation Coverage
In order to kill a mutant, the following three conditions have
to be fulfilled (cf. [22]):

1. The mutated code has to be reached and executed.
2. The mutation has to change the internal state.
3. The change has to be propagated to the output.

Conversely, all mutants which cannot be reached and exe-
cuted cannot be killed under any circumstances. As a conse-
quence, these mutants can be declared as not killed without
executing the SUT. With respect to conditional mutation
where all mutants are encoded together with the original
version, the original expression or statement can be replaced
again by a conditional expression or statement which ad-
ditionally collects coverage information. This information
should be gathered if and only if the original version is exe-
cuted (i.e., M_NO==0). For this purpose the condition condcov
is inserted which is in turn a concatenation of M_NO==0 and
a method call which collects the coverage information:

CondExpr(condcov, expr, expr)←−[expr (5)

condcov = (cond0 && covered) (6)

The COVERED method takes, as depicted in Listing 3, a range
as parameters in order to efficiently record expressions or
statements which are mutated more than once. In addition,
lazy evaluation is exploited by using a logical and (i.e., &&)
within the condition and the method always returns false

in order to fulfill the condition that the right most else part
contains the original expression or statement.

Support for Higher Order Mutation
Conditional mutation can also be extended to support higher
order mutation. The key advantage of having all mutations
within one file triggered by a certain condition provides the
opportunity to adapt the conditions so that multiple mu-
tants are executed. Depending on the order of higher order
mutation, i.e. how many first order mutants should be com-
bined, there are for instance the two following options: Use
a bitmask to encode several mutant identifiers within one
variable or use an array of mutant identifiers. The bitmask
option might be more efficient but it is limited to a small

Table 1: Investigated applications in the empirical study.

Application name
Number of
source files

Program
LOC*

Number of
mutants

Number of
test cases

Test case
LOC*

Covered
mutants

Killed
mutants

aspectj 1,975 372,751 406,382 859 17,069 20,144 10,361
apache ant 764 103,679 60,258 1,624 24,178 28,118 21,084
jfreechart 585 91,174 68,782 4,257 48,026 29,485 12,788

itext 395 74,318 124,184 63 1,393 12,793 4,546
java pathfinder 543 47,951 37,331 165 12,567 8,918 4,434
commons math 408 39,991 67,895 2,169 41,907 54,326 44,084
commons lang 85 19,394 25,783 1,937 32,503 21,144 16,153

numerics4j 73 3,647 5,869 219 5,273 4,900 401
*Physical lines of code as reported by sloccount (non-comment and non-blank lines).

Figure 3: Integration of the conditional mutation
approach into the compilation process.

number of identifiers. The concrete number is determined
by the trade-off between the maximum number of first or-
der mutants and the level of higher order mutation. Using 4
identifiers with 16 bits each would therefore limit the num-
ber of first order mutants to 65,536.

The support for higher order mutation is integrated into
the compiler and preliminary runtime results are also promis-
ing. However, since the focus of this paper is the design and
empirical evaluation of conditional mutation, we leave the
complete investigation of higher order conditional mutation
as future work, which is further discussed in Section 7.

Implementation Details
The process of compiling a source file into intermediate or
assembled code can be divided into the following steps:

• Parse: Parse the source code and build the AST.

• Attribute: Add semantic information to the AST.

• Flow: Flow analysis to check for semantic errors.

• Lower: Decompose syntactic sugar and simplify AST.

• Generate: Generate code for the target machine.

Now the question arises as to the best method for integrat-
ing conditional mutation into the compilation process. Ob-
viously, a parsed AST is necessary to apply a transformation
to it. Furthermore, it is advisable to transform the AST be-
fore the flow analysis and the lower step for two reasons. On
the one hand the code which shall be mutated should not
be simplified or desugared previously. On the other hand
the mutated code should also be checked by the compiler in
order to avoid an incorrect AST and thus invalid code.

As a consequence, only two options remain for the inte-
gration, namely before or after the attribution step. Apply-
ing conditional mutation after the attribution step is slightly
more complex since the additional nodes and subtrees which
shall be inserted also have to be attributed. However, an at-
tributed AST provides a lot of semantic information (e.g.,

type information) which offers more subtle mutations. Over-
all, the advantages of the second option outweigh the first
and hence the conditional mutation approach is implemented
as an additional, but optional, transformation after the at-
tribution step, as depicted in Figure 3.

Concerning the realized implementation of the approach
in the mainstream Java compiler, the optional conditional
mutation step can be triggered and configured by means of
compiler options. Additionally, the global mutant identifier
and the method to gather the coverage information are im-
plemented in a separate driver class.

5. EMPIRICAL STUDY
Conditional mutation has been integrated as an optional

transformation in the Java Standard Edition (SE) 6 com-
piler in order to evaluate the approach. Two aspects are
of particular interest in this empirical study, namely, the
runtime and the memory footprint of the compiler with the
enabled conditional mutation option and the runtime of the
compiled and instrumented programs. For this purpose, we
used the eight applications in Table 1 that range from 3,647
to 372,751 lines of code. According to selective mutation
[16], a reduced, but sufficient set of mutation operators [20]
has been chosen. As a first step, the following operators have
been implemented and are configurable via compiler options:

• ORB (Operator Replacement Binary): Replace a bi-
nary arithmetic(AOR), logical(LOR), relational(ROR),
or shift(SOR) operator with all valid alternatives.

• ORU (Operator Replacement Unary): Replace a una-
ry operator with all valid alternatives.

• LVR (Literal Value Replacement): Replace a literal
value by a positive value, a negative value, and zero.

Table 3 illustrates the necessary compile times for applying
these operators to the aspectj project. All shown runtimes
throughout the empirical study are the median of ten indi-
vidual runs1. We do not report additional descriptive statis-
tics or perform further statistical analysis since the runs are
deterministic and the timing results exhibit little, if any, dis-
persion. In addition to the total runtime and overhead, the
last column shows a normalized overhead per 1,000 mutants.
A smaller value in this column means less overhead and is
thus the better result. Regarding the quantity of 406,382
mutants, the total overhead of 33% for generating and com-
piling these mutants is almost negligible.

Furthermore, Figure 4 shows the compiler runtimes for
all other analyzed projects. The trend lines in this diagram

1Reported runtimes are measured on a Linux machine with Intel
Centrino CPU, 4GB of RAM, and kernel version 2.6.32-5-amd64.

Table 2: Time and space overhead for applying conditional mutation.

Application name
Runtime of test suite in sec Memory consumption* Size of compiled program*

original instrumented instrumented original instrumented original instrumented
wcs wcs+cov

aspectj 4.3 4.8 (11.63%) 5.0 (16.28%) 559 813 (45.44%) 18,368 30,508 (66.09%)
apache ant 331.0 335.0 (1.21%) 346.0 (4.53%) 237 293 (23.63%) 6,976 8,228 (17.95%)
jfreechart 15.0 18.0 (20.00%) 23.0 (53.33%) 220 303 (37.73%) 4,588 5,896 (28.51%)

itext 5.1 5.6 (9.80%) 6.3 (23.53%) 217 325 (49.77%) 4,140 6,580 (58.94%)
java pathfinder 17.0 22.0 (29.41%) 29.0 (70.59%) 182 217 (19.23%) 4,052 5,096 (25.77%)
commons math 67.0 83.0 (23.88%) 98.0 (46.27%) 153 225 (47.06%) 3,124 4,464 (42.89%)
commons lang 10.3 11.8 (14.56%) 14.8 (43.69%) 104 149 (43.27%) 968 1,456 (50.41%)

numerics4j 1.2 1.3 (8.33%) 1.6 (36.44%) 73 90 (23.29%) 408 508 (24.51%)
*Memory consumption of the compiler in MB and size of compiled program in KB.

Table 3: Compiler runtime to generate and compile
the mutants for the aspectj project.

aspectj (1,975 files - 372,751 LOC - 18.94 sec)

Operator Mutants
Runtime
in sec

Overhead
total

Overhead per
1k mutants

AOR 70,989 21.15 11.67% 0.16%
LOR 81,733 21.71 14.63% 0.18%
ROR 137,297 22.90 20.91% 0.15%
SOR 47,830 20.84 10.03% 0.21%
ORB 337,849 25.02 32.10% 0.10%
ORU 802 19.21 1.43% 1.78%
LVR 67,731 20.83 9.98% 0.15%
ALL 406,382 25.15 32.79% 0.08%

have been computed by means of the gnuplot fit function
which uses the method of least mean square error. The gra-
dients of all trend lines are decreasing for a larger number
of mutants. That implies that the relative overhead per
mutant is decreasing for an increasing number of mutants.
In order to avoid obscuring the visualization, Figure 4 does
not contain the higher runtimes associated with generating
and compiling the many mutants for aspectj. Nevertheless,
the trend for the aspectj project is similar to the other in-
vestigated programs since the relative overhead per 1,000
mutants is also decreasing for a larger number of mutants.

Besides the time of generating and compiling the mutants,
the execution time of the instrumented and compiled pro-
grams is also important. In order to determine the overhead
associated with the insertion of the conditional statements
and expressions, the analyzed applications are executed by
means of their test suites. To establish an upper bound on
time overhead, we consider the worst-case scenario for con-
ditional mutation when M_NO==0 and thus every condition
has to be evaluated. Furthermore, mutation coverage, as
described in Section 4, can be applied to determine the mu-
tants that cannot be killed by the test suite. This informa-
tion is collected by means of method calls which represent
an additional time overhead. Therefore, we also measure the
runtime of the test suites with mutation coverage enabled.

The corresponding results for both runtime analyses are
depicted in Table 2 where wcs and cov denote worst-case sce-
nario and coverage, respectively. The time overhead for the
worst-case scenario (wcs) ranges from 1.2% for apache ant to
29.4% for java pathfinder. For the worst-case scenario with
mutation coverage enabled (wcs+cov) the overhead ranges
between 4.5% and 70.6%. On average the overhead for wcs
and wcs+cov is 15% and 36%, respectively. Gathering the
coverage information leads to a larger overhead due to the

Figure 4: Compiler runtime to generate and compile
the mutants for all the projects, excluding aspectj.

additional method calls. Nevertheless, it has to be pointed
out that the coverage information is determined only once
for an instrumented application with a corresponding test
suite and hence the overhead is not crucial. The actual
overhead depends on the type of application. For instance,
apache ant does a lot of costly file system operations and
thus the additional costs for conditional mutation are negli-
gible. In contrast, java pathfinder and commons math repre-
sent applications that almost exclusively perform computa-
tions, thus explaining why the overhead is more noticeable.

Apart from the runtime of the test suites, the space over-
head in terms of compiler memory consumption and pro-
gram size is also considered, as depicted in Table 2. The
memory consumption of the compiler ranges from 19.2% to
49.8% and the overhead due to the larger program size varies
between 18.0% and 66.1%. Generally, the space overhead is
predominantly determined by the ratio of number of mu-
tants to lines of code, as shown in Table 1. Concerning the
memory footprint of the compiler, the average overhead is
36.2%. Thus, the enhanced compiler with conditional mu-
tation can easily run on commodity workstations.

6. THREATS TO VALIDITY
With regard to the empirical results, some threats to va-

lidity have to be considered. The choice of the applied
mutation operators could be a threat to internal validity.
Different operators may affect the runtime of the compiler.
However, the chosen operators are frequently used in the
literature and therefore provide comparable results [18, 20].

A potential threat to external validity might be the repre-
sentativeness of the selected applications. There is no guar-
antee that the depicted overheads will remain the same for
other programs. Nevertheless, the investigated applications
differ considerably in size, complexity, and operation pur-
pose and most of them are widely used. Furthermore, this
is to our knowledge the largest study of mutation analysis
to date. So, we judge that the reported results are meaning-
ful. Additionally, the conditional mutation approach might
be more or less efficient in terms of other programming lan-
guages and compilers. A replication of this study is thus
necessary, especially for languages that do not use interme-
diate code. This matter is left open for future research.

Defects in the compiler-integrated prototype could be a
threat to construct validity, but we controlled this threat by
testing our implementation with a developed test suite and
by checking the results of several small example programs.
Thus, we judge that the implementation worked correctly.

7. CONCLUSIONS AND FUTURE WORK
This paper describes and addresses the challenges associ-

ated with increasing the efficiency of mutation analysis. A
new method called conditional mutation is presented which
reduces both the generation time and the execution time.
It is, compared with the conventional way, much more ef-
ficient and offers the possibility of applying mutation anal-
ysis to large software systems. Moreover, mutation testing,
where mutants are generated and executed iteratively, be-
comes more feasible since the generation time is reduced to a
minimum. The approach is versatile, programming language
independent, and can be integrated within the compiler.

So far, conditional mutation has been implemented as an
optional transformation in the Java Standard Edition com-
piler and it has been applied to applications up to 372,751
lines of code. The conditional mutation step can be config-
ured via common compiler options. So, this enhanced com-
piler can be used in any environment based on the Java pro-
gramming language and hence is not limited to a particular
testing framework or tool suite. Furthermore, conditional
mutation can be easily combined with other do smarter and
do fewer approaches since the set of mutation operators is
configurable and the mutation analysis can be parallelized
and processed in a distributed environment.

Since the support for higher order mutation is also pro-
vided by the improved compiler, a comprehensive investiga-
tion of higher order conditional mutation is part of our future
work. Additionally, the set of applicable mutation operators
will be extended and we plan to integrate conditional muta-
tion into a C/C++ compiler. Moreover, the approach could
be optimized with respect to the runtime by balancing the
AST with further conditional expressions and statements.
This would decrease the necessary evaluations and thus the
runtime overhead. However, the space overhead would in-
crease. Consequently, further empirical studies addressing
the efficiency of first and higher order conditional mutation
with both new mutation operators and different program-
ming languages is another area for future work.

Finally, we will conduct a study with different tools such
as MuJava [12] and Javalanche [19] to compare conditional
mutation with related techniques. Because the bytecode
transformation operates at a different level of abstraction,
we will compare our compiler-integrated source-code trans-
formation with the bytecode transformation in order to study
the strengths and weaknesses of both approaches.

8. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation

an appropriate tool for testing experiments? In Proceedings
of the 27th International Conference on Software
Engineering, ICSE ’05, pages 402–411, 2005.

[2] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Future of Software Engineering,
FOSE ’07, pages 85–103, 2007.

[3] R. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 1999.

[4] T. A. Budd. Mutation Analysis of Program Test Data.
PhD thesis, Yale University, 1980.

[5] B. Choi, A. Mathur, and B. Pattison. PMothra: scheduling
mutants for execution on a hypercube. Software
Engineering Notes, 14:58–65, 1989.

[6] R. A. DeMillo, E. W. Krauser, and A. P. Mathur.
Compiler-integrated program mutation. In Proceedings of
the 5th Annual Computer Software and Applications
Conference, COMPSAC ’91, pages 351–356, 1991.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer.
IEEE Computer, 11(4):34–41, 1978.

[8] W. E. Howden. Weak mutation testing and completeness of
test sets. IEEE Transactions on Software Engineering,
8:371–379, 1982.

[9] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Report TR-09-06,
CREST Centre, King’s College London, UK, 2009.

[10] Y. Jia and M. Harman. Higher order mutation testing.
Information and Software Technology, 51:1379–1393, 2009.

[11] K. N. King and A. J. Offutt. A Fortran language system for
mutation-based software testing. Software Practice and
Experience, 21(7):685–718, 1991.

[12] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: A mutation
system for Java. In Proceedings of the 28th international
conference on Software engineering, ICSE ’06, pages
827–830, 2006.

[13] H. Mills. On the Statistical Validation of Computer
Programs. Technical report, IBM FSD Report, 1970.

[14] MuJava. The official web site of the MuJava project.
http://www.cs.gmu.edu/~offutt/mujava, 2010.

[15] A. J. Offutt. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering
Methodology, 1(1):5–20, 1992.

[16] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient
mutant operators. ACM Transactions on Software
Engineering and Methodology, 5(2):99–118, 1996.

[17] A. J. Offutt and J. Pan. Automatically detecting equivalent
mutants and infeasible paths. Software Testing,
Verification, and Reliability, 7(3):165–192, 1997.

[18] J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries,
pages 45–55, 2000.

[19] D. Schuler and A. Zeller. (Un-)covering equivalent mutants.
In Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation, ICST ’10,
pages 45–54, 2010.

[20] A. Siami Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient mutation operators for measuring test
effectiveness. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages
351–360, 2008.

[21] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation
analysis using mutant schemata. In Proceedings of the
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’93, pages 139–148, 1993.

[22] J. M. Voas. PIE: a dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18:717–727, 1992.

