Contextualized Programming Language
Documentation

Hannah Potter
hkpotter@cs.washington.edu
University of Washington
Seattle, Washington, USA

René Just
rjust@cs.washington.edu
University of Washington
Seattle, Washington, USA

Abstract

Learning the syntax and semantics of a new programming
language is a challenge. It is common for learners to refer to
language documentation many times and in many contexts
as they build comfort and understanding. We review existing
functional language documentation, finding that it tends to
be organized according to the structure of the language. Each
section interleaves narrative explanations, which introduce
precise terminology that is then used consistently, with code
examples. Sections often start with simpler special cases of
a construct before considering it in full generality.

To make use of language documentation, learners must
step away from the code they are working with, e.g., in an ex-
ercise or tutorial, to locate and transfer knowledge from the
documentation. We describe a system, ExpLAINTHIS, that au-
tomatically generates contextualized language documentation,
structured based on our study of language documentation
but specialized to the particular code at the cursor. This sys-
tem is integrated into the structure editor of Hazel, a live
functional environment. Documentation appears next to the
editor and color is used as secondary notation to correlate
the explanation with program terms. We also study syntactic
and explanatory specificity with a formative user study. We
find that participants desire documentation to be tailored
to specific syntax of the code a user is working with, while
allowing an adaptive level of specificity for code examples.

CCS Concepts: » Software and its engineering — Devel-
opment frameworks and environments.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567654

Ardi Madadi
ardier@cs.washington.edu
University of Washington
Seattle, Washington, USA

Cyrus Omar
comar@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

Keywords: functional programming, documentation, pro-
gramming education, structure editing

ACM Reference Format:

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar. 2022. Con-
textualized Programming Language Documentation. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (On-
ward! °22), December 810, 2022, Auckland, New Zealand. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3563835.3567654

1 Introduction

Learning a new programming language can be difficult, even
for experienced programmers. The programmer must be-
come familiar with new syntactic forms. A syntactic form
refers to an element in a language grammar, such as the
rule for a let. . .in expression. A term refers to an instance
of a syntactic form. An instance of a let. . .1in expression
could be let x = 1 in x + 1. Consider this single-line
code snippet, written in an ML-like language:

let x Float = f 1 in x +. 2.

It involves different syntactic forms, including a let...in
expression, a type annotation (Float), a function application
of f to an integer literal (1), a floating point operator (+.), and
a floating point literal (2.). These may be unfamiliar, even to
a programmer familiar with popular imperative languages.

Most programmers learning a new language do so on their
own [28]. They may only have access to static narrative
and examples from online tutorials, books, help forums, and
language references. Programmers report difficulties with
finding relevant documentation, e.g., because they may not
yet know the correct terminology to use in an online search
[28]. Moreover, while always available, this help is not as
adaptive as an expert may be to the specific learning context.

When a programmer is learning a new language, they
ideally have access to an engaged expert, such as a teaching
assistant or coworker, who can explain the syntax and se-
mantics of code that the learner is trying to understand or
write, providing context and varied explanations, reducing
the need to search for and through documentation.

https://doi.org/10.1145/3563835.3567654
https://doi.org/10.1145/3563835.3567654

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

This paper proposes a paradigm shift for programming
language documentation, away from static standalone doc-
umentation toward contextually adaptive systems. It also
presents one such contextualized language documentation
system, ExpLAINTHIS, integrated into a computational note-
book style programming environment that displays both
narrative and code snippets [11]. Code snippets can appear
as read-only examples interleaved into a narrative tutorial,
or they can be editable when the user is solving integrated
coding exercises. The language documentation is adapted to
explain the language constructs underlying the term at the
user’s cursor, at an adjustable level of specificity.

To inform the design of ExpLAINTHIS, we surveyed ex-
isting programming language documentation, focusing on
functional languages (Sec. 2) and consulted prior work in this
area (Sec. 7). We found that documentation emphasizes pre-
cise and consistent terminology for syntactic forms, which
are organized into “features” largely corresponding to the
structure of the language. We also found that narrative ex-
planations tend to be interleaved with examples and that
compound or complex language constructs, e.g., destructur-
ing let expressions with support for mutual recursion, were
introduced progressively using simpler special cases.

We implemented ExpLAINTHIS as a Hazel editor service,
which we describe by example in Sec. 3. Hazel is a live func-
tional programming environment with a structure editor that
ensures that even partially completed code is syntactically
well-formed [16, 18-20]. Because Hazel always provides a
syntax tree, ExpLAINTHIS is applicable to any code snippet.
The novel components of ExpLAINTHIS interface are a syn-
tactic specificity slider, an adaptive explanation system, and
an adaptive collection of related examples. All of these are
informed by the observations reported in the documentation
survey (Sec. 2). While we chose Hazel, ExpLAINTHIS’ core
features could be implemented in editors for a variety of
programming languages.

To evaluate and iteratively improve the design of Ex-
PLAINTHIS, the narrative explanations, and the chosen ex-
amples, we conducted a formative study soliciting feedback
from individuals involved or capable of assisting in teach-
ing functional programming courses (Sec. 4 and Sec. 5). In
particular, we focused on understanding the extent to which
participants value explanations and examples specifically
contextualized to the user’s source code. We found that par-
ticipants prefer (1) explanations and examples tailored to
some extent to the specific syntax of the user’s code, (2) a
fixed level of specificity for code explanations, but (3) an
adaptive level of specificity for code examples. Additionally,
participants value precision and uniformity in the terminol-
ogy that appears in explanations. Finally, participants value
smaller, focused examples. These findings can guide the com-
munity in exploring the large design space of contextually
adaptive documentation systems (Sec. 8).

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

2 Language Documentation Survey

Many programming languages provide online language doc-
umentation, ranging from informal quick reference guides
to tutorials and in some cases, formal language definitions.
We surveyed online documentation for three languages to
better understand existing documentation practices.

We surveyed the documentation for OCaml [15], Reason
[26], and Racket [24]. We chose these partially due to our
familiarity with the languages and their documentation and
because these are widely-used languages with functional
elements that bear many similarities to Hazel.

Our starting point for this survey was each language’s
official website [15, 24, 26]. We focused on the language
documentation that could be found from that starting point.
Reading through some of this documentation, including in
all cases documentation related to basic variable binding as
a focal point, we made notes on various observed features:

e Each language offered different kinds of documenta-
tion for different use cases (e.g., quick references, tu-
torials, books, and formal language definitions). The
different kinds of documentation differed in level of
detail, assumed different background knowledge, and
incorporated examples of varying complexity.

e Documentation was often organized into sections de-
scribing different “features” or “constructs” which gen-
erally followed the type structure of the language, i.e.
it grouped together the introduction and elimination
or pattern matching forms of a type (whether or not
types were statically checked). Some general features,
like let bindings, did not correspond directly to a single
type, so they were described separately, often in some
simplified form, e.g., let bindings without discussion
of mutual recursion or destructuring, and then reoc-
curred, in specialized form or as general scaffolding in
examples, throughout the documentation.

e Within a section, there was also sometimes a progres-
sion from simple special cases to more general or ad-
vanced modes of use of a construct.

e There was substantial use of links, which (1) often con-
nected less formal and more formal documentation for
the same concept and (2) were used to provide context
for language constructs that appear incidentally in ex-
amples or that have some conceptual relationship to
the construct of interest.

e There was extensive use of simple examples that ap-
pear to be carefully curated to highlight the construct
of interest without requiring a deep understanding of
many other constructs. However, there is also gener-
ally a progression of constructs such that examples
for later constructs will use previous constructs, e.g.,
functions and let bindings appear in many subsequent
examples.

Contextualized Programming Language Documentation

e Introductory documentation often sought to help pro-
grammers who are new to the particular language or
functional paradigm but not to programming in gen-
eral by drawing comparisons to other languages or
paradigms, e.g., explicit discussion of how functional
let binding differs from imperative assignment.

e Precise and consistent use of terminology was used
to refer to language constructs and positions within
constructs (e.g., the “guard,” “then branch,” and “else
branch” of a conditional expression).

3 Design of ExpLAINTHIS

ExpLAINTHIS is designed (1) to serve a similar role as quick
reference documentation, so it incorporates many of the
observations relevant to that kind of documentation as dis-
cussed in Sec. 2 as well as providing multiple levels of doc-
umentation for the same concepts, and (2) for users who
are not novices to programming, but that may be novices to
functional programming.

Potential use cases of ExpLAINTHIs include code reading
and comprehension (e..g, a user trying to understand existing
functions in a library or examples in instructor-created tuto-
rials); writing new code (e.g., a user trying to modify starter
code to complete an assignment); or debugging (e.g., a user
trying to understand unexpected behavior of a function).

Here we present the initial design of our tool using a
motivating example. We note that the design presented is
preliminary, representing a first effort toward the vision
presented in this paper, and our intention is to refine it based
on the feedback we received in our user study (Sec. 5).

3.1 ExprLaiNTHis by Example

We explain our design for ExpLAINTHIS by example. The
hypothetical subject of our use case is a student who has
multiple years of experience programming with imperative
programming languages, such as C++, and is now taking a
course where they are introduced to the functional program-
ming paradigm for the first time. In particular, the course uses
Hazel, a functional programming language. The student has
been given a formal introduction to the language in lecture
and is now working through exercises to strengthen their
understanding. The student is currently working through
an exercise to practice using the standard map function. The
starter code for the exercise can be seen in Fig. 1. As part
of the starter code, the student is given a reference imple-
mentation for map!. Additionally, the student is given the
skeleton of a function, prod. The exercise is for the student
to implement the body of the prod function, which should
take a List of Int two-tuples and return a List containing
the products of the elements of each tuple.

Polymorphism is not currently implemented in Hazel, so we use an imple-
mentation of map with the specific types needed for the example.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

The student first wants to make sure that they understand
how the map function works. The student selects the body
of the function and sees the syntactic form documentation
shown in Fig. 1. The three dialogs that form the documenta-
tion system are the Syntactic Form, Code Explanation, and
Code Examples dialog.

The Syntactic Form dialog presents the student with infor-
mation about the syntax of the term on which their cursor
is currently placed, which here is a case expression. The
editor indicates which syntactic form is being documented
with a green background on the parts of the syntax that are
at the root of the term. The dialog displays varying levels of
details about its subforms using meaningful labels which can
be controlled by the user using the slider at the bottom of
the box. In Fig. 1, the student is first shown the most general
syntactic form of a case expression.

The Code Explanation dialog provides a natural language
explanation of the code that the cursor is on relative to the
level of specificity of the indicated syntactic form. Code
highlighting uses matching colors to relate the parts of the
explanation to the associated source code. Terminology, such
as “clause”, is indicated with italics. In Fig. 1, the student
is first shown an explanation of the case expression that
makes up the body of the map function. This explanation
is relative to the general syntactic form of a case via the
syntactic form slider, but is tailored to the particular case
expression in the code by inlining small pieces of code, the
color highlighting used, and the number of rules presented.
Larger pieces of code are referred to using the corresponding
natural language terminology, e.g., “clause”

The code example box provides one or more examples of
the term the cursor is on, relative to the level of specificity of
the indicated syntactic form. Examples include information
about the result of evaluating the example and a natural
language explanation. In Fig. 1, the student is presented with
a few examples they can use to try to better understand the
body of the map function and case expressions in general.

After reviewing the information of the syntactic form,
code explanation, and code example boxes, the student feels
that they better understand how general case analysis works
in Hazel. However, they still do not fully understand how
the structural pattern matching in the map body works. The
student wants to understand a more specific syntactic form
than general case expressions, so they move the syntactic
form slider to “more specific” (Fig. 2a and Fig. 2b). The more
specific syntactic form gives explanations and examples for
cases of an empty list and a non-empty list. After seeing this
more specific explanation and more examples, the student
feels more confident in their understanding of how the pat-
tern matching works in the body of the map function. The
student can select any part of the map function to understand
other pieces following the same process.

When the student feels more confident in their understand-
ing of the map function, they feel ready to start implementing

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Hazel Hw1 v Map Practice v <

let map : ((Int, Int) > Int) > [(Int, Int)] > [Int] =

fun f {
fun xs {
|case xs
| [1 =11
| yiiys = (f y)::(map f ys)
end

}

in

let prod : [(Int, Int)] > [Int] = fun xs {:} in

RESULT OF TYPE:

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

tJF3 SYNTACTIC FORM

(?) case <scrutinee>

| <pat1> = <clausel>
» || <pat2> = <clause2>
| ... = ...

end

less specific more specific
CODE EXPLANATION
¥ Show Highlight

Consider by the cases of XS. If XS matches:

« the first pattern [], evaluate to the first
clause [].

« the second patterny : :ysS, evaluate to the
second clause.

1’y (D This explanation is helpful
See more documentation

CODE EXAMPLE

case 2

| 1= 1.0

| 2= 2.0

| = 3.0
end

Result: 2.

Explanation: The scrutinee 2 matches the 2 pattern, so the
case expression evaluates to the second clause 2.0.

nb @Thls example is helpful

case (2, true)
| (1, true) = 1.0
| (2, false) = 2.0

Figure 1. ExpLAINTHIs for Hazel. The editor is shown on the left and ExpLAINTHIs is shown in the right panel. The programmer’s
cursor is at the beginning of the case expression. In Hazel, the term where the editor cursor is currently positioned is highlighted
in light green. Holes are displayed with light-grey hole identifier numbers, such as the body of the prod function.

SYNTACTIC FORM

case <scrutinee>

| [1 = <clausel>

| hd::tl = <clause2>
end

less specific more specific

CODE EXPLANATION
¥ Show Highlight

Consider by the cases of XS. If XS matches:

« the first pattern [], evaluate to the first
clause []. The first pattern is matched by
the empty list [].

« the second patferny: :ys, evaluate to the

second clause. The second pattern is
matched for any non-empty list where the

head is boundto y and the tail is bound to
ys.

5 LR This explanation is helpful
See more documentation

(a) More specific syntactic form and code explanation.

case []

| [1 = true

| hd::tl = false

end

Result: true

Explanation: The case expression evaluates to true if the

scrutinee is an empty list and false if the scrutinee is a non-

empty list. The scrutinee here is [], so the first pattern is
hed and the ion | to true.

5 R example is helpful

case 1::2::[]

| 11 =0

| hd::tl = t1

end

Result: 2::[1]

Explanation: The case expression evaluates to [] if the
scrutinee is an empty list and the tail of the scrutinee if the
scrutinee is a non-empty list. The scrutinee here is a non-
empty list 1::2::[], so the first pattern is not matched. The
second pattern is matched and the variable hd is bound to
the head element 1 and the variable tl is bound to the tail list
2::[], so the case expression evaluates to tl which is 2::[]

[b [DThis example is helpful

See more examples

(b) More specific code examples.

Figure 2. Syntactic form and code explanation (left) and code examples (right) of a more specific form of a case expression.

Contextualized Programming Language Documentation

the prod function. The student stubs out the implementation,
knowing that map needs to be called on some function and
the input list to prod, xs . The student stubs out the function
that will be used for map, following the other functions given
in the starter code which use a single variable pattern (Fig. 3).

At this point, the student needs some more help under-
standing how to write the function that will be used by map.
The documentation gives them specific information about
functions that use a single variable pattern (Fig. 4). However,
this very specific syntactic form of a function is not what
the student wants because they need to extract the elements
of the tuples in the lists. The student moves the syntactic
form slider to the more general form of a function to try to
understand how their inner function stub can be edited to
have the functionality they need (Fig. 5). The student can
see from this more general documentation that functions are
not restricted to a single variable pattern for the argument,
but rather can use a different pattern. Using this informa-
tion, the student is able to edit their inner function stub to
use a tuple pattern and from there is able to complete their
implementation of the prod function.

The subsequent sections provide a more detailed descrip-
tion of ExPLAINTHIS.

3.2 Hazel Tutor

Hazel is a browser-based system [16]. Editing in Hazel is
done through a structure editor. One of the key features of
Hazel is that all program states are syntactically well-formed
and semantically meaningful, having both a type and a non-
trivial result [18, 19]. This is accomplished by automatically
inserting empty holes to stand for missing parts of a program
as well as wrapping non-empty holes around parts of a pro-
gram with semantic errors. With every program state being
meaningful, the “gap-problem” is solved, where in traditional
programming environments tools either only work partially
or not at all for incomplete programs. In Hazel, tools are able
to give feedback when programs are incomplete, which is
when programmers often need assistance.

Hazel currently has tools that make use of typing informa-
tion in the program [21]. These tools are the Cursor Inspector,
which displays information about the expected and actual
types of patterns and expressions in a program, and the
Strategy Guide, which is designed to guide novices through
a type-driven development strategy, presenting a hierarchi-
cal list of valid edits for empty holes. These tools are part
of the Hazel Tutor project, which is focused on developing
assistive technology specifically targeted at novices to typed
functional programming.

Here we present the design for another tool in the Hazel
Tutoring system, ExPLAINTHIS, to provide novices with con-
textualized programming language documentation. While
the Cursor Inspector is designed to surface information about
the static semantics of a program, this tool gives information
about the syntax and dynamic semantics of a program. The

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

let prod : [(Int, Int)] > [Int] =
fun xs {map [fun x { } xs}

Figure 3. Initial stub for the function used by map which
uses a single variable pattern for the argument.

SYNTACTIC FORM

fun arg {<body>}
I

less specific more specific
CODE EXPLANATION
¥ Show Highlight
A function that takes in an argument which is
bound to the variable X and returns the result of
computing the body.

y LR This explanation is helpful
See more documentation

CODE EXAMPLE

fun x {x - 1}
Result: fun x : - {x - 1}

Explanation: The function literal fun x {x - 1} is a value.
When applied to an argument, the x will be bound to the
argument and the result will be the argument minus 1. For

if the ar is 3, the will give 2. The
body is only evaluated when the function is applied to an
argument.
[6 [DThis example is helpful

See more examples

Figure 4. Documentation for functions that use a single
variable pattern for the argument.

SYNTACTIC FORM

fun <pat> {<body>}
less specific more specific

CODE EXPLANATION

¥ Show Highlight

A function that takes in an argument which is

bound to the argument pattern X and returns the

result of computing the body.

i) [This explanation is helpful
See more documentation

CODE EXAMPLE

fun (x, y) {Cy, x)}

Result:

fun x, y : (-,) > (-, 2) {y, x}

Explanation: The function literal fun (x, y) {(y, x)} is a value.
When applied to an argument tuple, the x will be bound to
the first value of the argument and y will be bound to the
second argument. The result will be a tuple with y as the
first element and x as the second element. For example, if

the is (1, 2) the will evaluate to (2, 1). The
body is only evaluated when the function is applied to an
argument.

Iﬁ [@This example is helpful
fun x {x - 1}
Result: fun x : - {x - 1}

Explanation: The function literal fun x {x - 1} is a value.
When applied to an argument, the x will be bound to the
argument and the result will be the argument minus 1. For

if the arg is 3, the will give 2. The
body is only evaluated when the function is applied to an
argument.
ﬁ [DThis example is helpful

See more examples

Figure 5. Documentation for general functions.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

tool’s interface will be displayed when a user requests docu-
mentation for the term at their current editor cursor position.
One of the key goals of this interface is to give a novice to
Hazel all the information they would need to understand
a term that is present in their program without needing to
consult external documentation.

3.3 Syntactic Form

In ExpLAINTHIS, the explanations and examples can be tai-
lored to different level of specificity of the syntactic form.
In general, the most specific syntactic form can be thought
of as the most simple version of a form that would be used
pedagogically to teach it. For instance, for a let expression,
let-binding to a single variable is a specific version of a let
expression that is often used to introduce this syntactic form.
In contrast, a let expression, let-binding with patterns and
mutual recursion is the general (least specific) syntactic form.
A programmer can scrub back and forth on this slider to tune
the explanations and examples to the level of specificity that
is most useful to them for a given task.

The system attempts to start at a suitable level of general-
ity that captures the particular syntax that the cursor is on,
without including features that are unused. We are not at
this time trying to incorporate any machine learning tech-
niques to infer user intent or knowledge of a programming
language. In the future, we may consider trying to model
a user’s current knowledge based on syntactic forms they
have seen or used in the system.

3.4 Code Explanation

Explanations can be tailored to both the code on which a
user’s cursor is placed as well as the chosen level of specificity
on the syntactic form slider. The explanations demonstrate
correct uses of terminology used for the syntactic forms, such
as can be seen by the italicized text. Code highlighting uses
matching colors to relate the parts of the explanation to the
associated source code. Similar highlighting is used in Pyret,
a language designed for novices [22]. The code explanation
highlighting can be toggled on and off to minimize potential
distraction to the user.

3.5 Code Examples

Examples can also be tailored to both the code on which a
user’s cursor is placed as well as the chosen level of specificity
on the syntactic form slider. The goal is to keep the examples
relevant to the code that the programmer is actually trying
to explore and understand rather than a small selection of
general examples that may be difficult for the programmer
to map back to their code context. Additionally, we want
examples that highlight the particular aspects of the code
the programmer is trying to understand, as informed by the
user’s selection with the syntactic form slider.

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

3.6 Other Features

Other features of the design include links to external docu-
mentation and feedback indicators. External documentation
can be reached through either the link to see more docu-
mentation shown in the Code Explanation dialog or the link
to see more examples shown in the Code Example dialog,
both seen in Fig. 5. The external documentation will be static
learning material created for each of the syntactic forms in
Hazel. The goal is that the programmer will rarely need to
consult this external material in order to understand the syn-
tactic forms, but that they will have all of the information
they need right there in the programming environment. The
feedback indicators shown with the thumbs-up and thumbs-
down icons seen in Fig. 5 allow users to quickly indicate if
they found any part of the contextualized language docu-
mentation helpful or unhelpful. This feedback can be used
to improve messaging.

4 Evaluation Methodology

A key goal of ExPLAINTHIS is to provide documentation that
is similarly beneficial as hand-curated explanations by ex-
perts. We conducted a user study designed to explore the
question of what properties of explanations and examples
experts believe would be most beneficial to someone try-
ing to understand a given syntactic form. Our participant
pool consisted of 10 programmers who had the necessary
knowledge of functional programming for our study. Our
IRB-approved study consisted of three phases: a screening
survey, a background survey, and an interview. Participants
who completed all three phases were compensated with a
$25 gift card.

4.1 Screening Survey

All participants completed a screening survey to ensure they
had the required knowledge to participate in our study. The
screening survey consisted of five multiple-choice, beginner-
level functional programming questions to assess whether a
candidate had a basic understanding of topics such as struc-
tural pattern-matching, curried functions, and let bindings.

4.2 Background Survey

Participants who received a satisfactory score, defined as
missing no more than one question on the screening survey,
were asked to complete a background survey to collect data
on their functional language experience and demographics.

4.3 Interview

Participants who passed the screening survey were invited
to complete an interview. We conducted three in-person and
seven virtual interviews. Interviews were designed to last
about 75 minutes and included a 15-minute instructional
demo followed by a 60-minute survey. The participants’
screen activity and audio were recorded during the interview.

Contextualized Programming Language Documentation

4.3.1 Instructional Demo. The demo was designed to ac-

quaint the participants with the design space for ExPLAINTHIS.

Each participant was briefed on the motivation behind Ex-
PLAINTHIS and its goals.

4.3.2 Prompts. Following this introduction, participants
were asked to respond to a series of nine prompts. We de-
signed the prompts to explore a range of explanations and
examples to understand what properties participants con-
sidered when determining how beneficial they found the
options. Additionally, we designed the prompts to provide
insights into how a syntactic form is being used and how an
indicated level of specificity for the syntactic form influenced
participant rankings.
Each prompt included the following components:

1. Prompt title: A descriptive title of the prompt.

2. Code snippet: Uneditable code for which the partic-
ipants were asked to rank a set of explanations and
examples. The cursor was placed on a predefined term.

3. Result: The computed result of the code snippet.

4. Syntactic form: The syntactic form for the selected
term in the code snippet. It displays the form along
with a disabled slider which indicated the level of speci-
ficity of the syntactic form.

5. Code explanation: Various explanations for the code
snippet which the participants were asked to rank.
When hovered over, both the explanations and the
code snippet were simultaneously color-highlighted
with different colors mapping corresponding parts of
the explanation and the code snippet together.
Participants were asked to rank each explanation with
respect to the code and the syntactic form using rank-
ing drop downs which were displayed to the left of
each explanation. Participants were asked to rank the
options according to what they thought would be most
beneficial to a programmer who is trying to understand
the indicated syntactic form when looking at the spe-
cific code snippet. The explanations could be ranked
from 1 to N, where N was the number of explanations.
The participants were asked to avoid assigning iden-
tical scores to the different options within the same
prompt. Each ranking drop down had an extra option
for participants to mark the explanation as not useful.
Additionally, a free response text box was provided for
participants to give any alternative explanations that
they thought would be more beneficial to the potential
users of our tool than the options presented.

6. Code example: Various code examples for the source
code were provided. The participants had the option
to expand (and collapse) the examples to see the re-
sult of each example’s computation and an individual
explanation for that example.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Similarly to the code explanations, code examples also
included a ranking drop down as well as a text box for
alternative examples and feedback.

Participants could navigate back and forth between the
prompts using arrow buttons and a drop-down prompt se-
lector. The order in which explanations and examples were
presented was randomized.

4.3.3 Specificity Levels and Syntactic Forms. We used
nine prompts, including four sets of two prompts where the
pairs of prompts were identical except for the level of speci-
ficity (syntactic form slider). Across the nine prompts, there
were five different syntactic forms of focus: a case expres-
sion (Case), a function application with a tuple parameter
(FA w/ Tuple), a curried function application (FA Curried),
a function literal (Fun Lit), and a let expression (Let). The
order of prompts was randomized except that the prompts
that were identical modulo the specificity slider were pre-
sented in adjacent order, the less specific level always being
presented first.

4.4 Artifact Availability

The user-study artifacts (e.g., surveys, scripts, executable) are
available at: https://doi.org/10.6084/m9.figshare.21381864.

5 Results
5.1 Participant Makeup

We had 10 participants complete the interview phase of the
study. Four of the participants self-identify as women. Seven
of the participants are graduate students. All participants
have taken or are currently taking at least 5 computer sci-
ence courses, with eight participants having taken more than
10. Eight of the participants have some computer science
industry experience (including internships). Four of the par-
ticipants have formal teaching experience in a programming
languages or programming paradigm course. Nine of the
participants have some experience studying from a program-
ming languages or programming paradigm course. The most
common functional programming languages that partici-
pants reported having at least a little experience with were
OCaml (7 participants), Racket (8 participants), and Haskell
(8 participants). Four of the participants have at least some
experience with structure editors.

5.2 Features of Explanations and Examples

Based on observations from the documentation survey, dif-
ferent designs and questions about good properties of expla-
nations and examples we have considered, interviews with
participants, and our own review of properties of the expla-
nations and examples we gave participants, we derived labels
of properties that capture characteristics of our explanations
(see Table 1) and examples (see Table 2) of syntactic forms.

https://doi.org/10.6084/m9.figshare.21381864

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

Table 1. Properties of code explanations. Syntactic form refers to the outermost form of the expression the cursor is on.

Group Label Sublabel Meaning
Technicalities Gist/Intuition Trying to convey the essence of a syntactic
form rather than technical details not necessarily
needed for being able to work with the form in
the language
Technical Details Uses technical language and details for informa-
tion about the syntactic form
Levels of Explanation Explains Subforms Specializes messages based on subforms
Separated Subform Information about a subform is visually separated
from the information about the outer forms
Incorporated Subform Information about a subform is incorporated into
the information about the outer forms
General Uses an explanation of the general syntactic form
Verbalization Verbalization Gives a verbalization of the syntax, but does not
add any additional explanatory information
Evaluation Order Out of Order Structure does not follow the evaluation order
Explicit Order Explicitly conveys the evaluation order

Table 2. Properties of code examples. Syntactic form refers to the outermost form of the expression the cursor is on.

Group Label Meaning
Match Code Snippet Matches Overall Subform Shape Matches overall shape (e.g., tuples of any size, curried function
application) of the subterms of the code snippet
Matches Context Matches syntax of parts of code snippet outside the focused
syntactic form (does not apply if no forms outside focused form)
Matches Types Matches all the types in the code snippet for the syntactic form
(based on declarative typing)
Varies Subform Shape Uses different subform shapes from those used in the code snip-
pet (e.g., tuples of different size)
Varies Types Uses different types from those used in the code snippet
Details Highlight Details Highlights details about the syntactic form, including potential
sources of confusion or special cases
Complexity Uses Meaningful Let Bindings ~ Uses let bindings to name pieces of the example to incorporate
“meaning”
Extra Forms Wraps the syntactic form in other forms (excluding let bindings)
or uses more complex subforms than in the code snippet (e.g.,
case)
Use of Form Highlights how a base (not operation) syntactic form is used
(e.g., form is a function literal and the example shows it being
applied)
Concise Uses a concise (minimal) example of the syntactic form—no extra
wrapping forms nor complicated subforms
Evaluation Does Not Evaluate to Simple Evaluates to a function

Contextualized Programming Language Documentation Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Table 3. Properties and voter rankings of code explanations. Lower ranks indicate more preferred explanations. LS and MS are

the ranking votes for less and more specific, respectively. (‘- = no prompt for the associated specificity level.)
Technicalities Explanation Verbalization Evaluation Order ‘ Rank
Gist Details Subforms General Out of Order Explicit ‘ LS MS
Sep. Inc. ‘
Case v v v 1 -
v v v 2 -
v v v 3 -
FA w/ Tuple v v 1 1
v v v 2 2
v v 3 3
FA Curried v v v 1 1
v v 22
v v v 3 3
v v 4 4
Fun Lit v v v v v 1 3
v v 2 2
v v v v 3 1
Let v v v 1 2
v v v 2 1
v v v 3 3

Table 4. Properties and voter rankings of code examples. Lower ranks indicate more preferred examples. LS and MS are the
ranking votes for less and more specific, respectively. (MS = Matches Overall Subform Shape, MC = Matches Context, MT =

Matches Types, VS = Varies Subform Shape, and VT = Varies Types; ‘-’ = no prompt for the associated specificity level.)
Match Code Snippet Details Complexity Evaluation ‘ Rank
MS MC MT VS VT Let Extra Forms Use Concise ‘ LS MS
Case v v v 1 -
v o v v 2 -
v v v 3 -
v v v v v 4 -
FAw/Tuple v v v v 11
v v v v 2 3
v v v 3 4
v o v v v v 4 2
FA Curried v o v 1 1
v v v v v 2 3
v v v v v 3 2
v v v v 4 5
v o v v v 5 4
v v v 6 6
Fun Lit v o v v v v 1 3
v v o v v v v 2 1
v v v v 3 4
v v v v v 4 2
v o v v v v 5 5
Let v v 1
v v v 2 3
v v v 3 2

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

We then used these properties to label the explanations
and examples shown to participants (see Table 3 and Table 4).
The purpose of this labeling process is to better understand
properties of explanations and examples that participants
consider to be beneficial rather than develop a general label-
ing scheme.

5.3 Rankings of Explanations and Examples

To aggregate participants’ votes for different explanations
and examples, we used the Single Transferable Vote method,
which can be used where voters rank candidates (in this case
explanations and examples) according to their preferences
[25]. We used the vote package in R to get the complete
ranking of candidates running for N - 1 seats (where N is
the number of explanations or examples for a given prompt).
We allow for equal rankings, which automatically corrects
rankings that would otherwise be considered invalid (e.g.,
rankings 2, 3 would be corrected to 1, 2). Explanations or ex-
amples that were not ranked or marked as not useful by par-
ticipants are converted to “NA” votes. Votes for participants
who have “NA” votes for all explanations and examples are
considered invalid and will not be automatically corrected.
Table 3 and Table 4 show the participants’ vote rankings.

5.4 Discussion

Four total votes were invalid, all for the more specific syn-
tactic form level: one for the examples for FA w/ Tuple, one
for the explanations for FA w/ Tuple, and two for the exam-
ples for Fun Lit. Both of the invalid votes for FA w/ Tuple
correspond to a participant not answering a prompt. The
two invalid votes for Fun Lit examples both correspond to
participants indicating that none of the given examples were
useful. Both of these participants wanted an example that
more closely matched the indicated level of specificity of
the syntactic slider, in this case an unapplied function literal
with a tuple argument pattern; two other participants gave
similar free response examples. This aligns with our general
observation that participants wanted the examples shown
to be influenced by the level of specificity.

We observe that the level of specificity of the syntactic
slider in general did not affect rankings as much for explana-
tions as it did for examples, when considering total rankings.
This is consistent with comments made by participants. One
participant said, “..I'm kind of tempted to give the same
rankings for all of the code explanations and then basically
change the code examples for the specificities... I think that’s
what I've basically been doing... subconsciously...” Another
participant when asked about these trends responded “... I
think that [the] syntactic form should... change the examples
more than the explanations...” For explanations, two of the
four prompts that used multiple levels of specificity have
identical rankings. However, we also observe that for the
example rankings when only considering the top ranked

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

example, three of the four applicable prompts are identi-
cal between syntactic form specificity levels. Aligned with
these observations about the influence of the syntactic form
specificity level, we observe that for explanations for a more
specific syntactic level, all top ranking choices were special-
ized to explain subforms. These observations indicate that
explanations and examples should be tailored both to code
that a programmer is exploring and to particular questions
that a programmer is asking about the code.

Our current contextualized programming language docu-
mentation design uses the syntactic form slider as a proxy
for what a programmer is trying to understand about a piece
of code. Some participants indicated that the current design
of the slider may not be a natural way for a user to express
that. Two participants indicated the syntactic form indicator
did not fit how they consider code, stating it was not how
their “brain understands code” and not the way their “brain
works.” One participant suggested, “...I feel like it might be
helpful to have not like a linear sort of like less specific to
more specific about the syntactic form, but like more selec-
tive which specific features are confusing...” This opens the
design question for an intuitive way for programmers to
express these questions, which is left to future work.

Considering properties of technical correctness, we ob-
serve that in general, participants did not prefer explanations
that elided technical details; three of the four explanations
that gave the gist/intuition of the syntactic form were given
the lowest ranking for both levels of syntactic form speci-
ficity, with none receiving the highest ranking. These ob-
servations indicate that explanations should use correct and
precise terminology.

For examples, we observed that participants generally do
not prefer examples that used extra, complex syntactic forms,
even when those forms gave more “meaningful” examples
or demonstrated a use of a literal syntactic form. We observe
that except for one example, no example that has the “Extra
Forms” label has a top-ranking. Rather, participants preferred
examples of the syntactic form with focused details relevant
to how the form is actually used in the code and the level of
specificity of the syntactic form slider.

We plan to refine our design and messages based on our
observations and the feedback we received in the formative
study, including developing a systematic way to define ex-
planations and examples. We also plan to investigate how
helpful these designs are to users in practice (see Sec. 6).

5.5 Validity

We will now discuss the validity of our study design. For
external validity, we do acknowledge that our participant
sampling method is primarily a convenience sample. This
may impact the generalizability of our results. However, this
sample should be a fairly good representation of the tar-
get population for the study, which are programmers with

Contextualized Programming Language Documentation

enough knowledge of functional language concepts to com-
petently teach a course that uses a functional programming
language. We did recruit from multiple labs and universities
to get a more diverse sample of participants. For internal
validity, we did screen our participants to make sure they
had the necessary background knowledge to provide infor-
mative responses to our task prompts. For construct validity,
our tasks are designed to cover a range of code explanations
and examples. Relevant tasks are framed with approximately
the same limited level of information about the code that
ExpLAINTHIS will be working with.

One threat to validity is that some of the participants ran
into a bug that required reloading the study infrastructure,
which re-randomized prompts and made it so that partici-
pants were not able to look back on their previous answers.
Additionally, some participants mixed up the order for which
ranking is “better” We asked participants to flip their orders
when we noticed this, but it is possible that some unintended
orderings were made. Another threat to validity is that the
questions asked by the interviewer may have swayed partic-
ipant responses.

Our study is focused on ExpLAINTHIS, contextualized doc-
umentation for Hazel, aiming to generalize our results to
the various syntactic forms in this particular environment.
Our observations may not generalize to other programming
paradigms, languages, or environments.

6 Future Work

There are many open avenues for further exploration of
contextualized programming language documentation. In
particular, it remains for future work to investigate use of
ExpLAINTHIS by our target user: experienced programmers
who are new to a particular programming language. Our
formative study (Sec. 4) focused on properties of explana-
tions and examples that experts would choose to provide a
programmer learning a new language, as well as insights
into our tool design. After design iteration based on the re-
sults of this study, the next step is to evaluate our tool and
messages on those who fit our target audience. We plan to
deploy an implementation of our tool to a university-level
programming languages course, where many students are
learning not only Hazel, but the functional paradigm for
the first time. We can gather light-weight feedback from the
students using the feedback indicators (Sec. 3.6), as well as
analyzing logging information about tool use. This informa-
tion will provide better understanding of the effectiveness
and usability of our design and messages.

Along with exploring tool use from the learner perspec-
tive, an area for future work is investigating EXpLAINTHIS
from the message author’s point of view. Currently, all ex-
planations and examples as well as the syntactic structures
they each apply to is written into Hazel source code. It re-
mains for future work to find easier ways for an educator

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

to specify syntactic structures and specialize messages to
suite particular educational needs and goals. Additionally,
expanding our contextualized documentation system to give
specialized messages for APIs or user-defined syntax, e.g.,
via macros [17], may be useful to programmers trying to
work with unfamiliar APIs. It could be beneficial for authors
of such APIs or newly defined syntax to easily be able to
define their own documentation to work within our system.
Another line of work is looking at incorporating more
information about a program into the contextualized docu-
mentation. Our current design and implementation only uses
the syntactic structures of a program, but there are other
forms of semantic information available (e.g., types) that
could potentially be utilised to provide more contextualized,
meaningful, and useful documentation to programmers.
Future iterations of Hazel could leverage contextualized
documentation that considers the program context and al-
lows the user to query for particular functionalities using
natural language, similar to CodeMend [27]. Additionally, al-
lowing users to interact with presented code examples, such
as by stepping through execution and editing, may be a use-
ful augmentation to the current presentation in ExpLAINTHIs.
This feature was desired by one of our participants and is
present in tools such as Nota [3] and Python Tutor [5].

7 Related Work

ExpLAINTHIS’s design, and future refinements thereof, draws
from research on novice programmers, contextualized ex-
planations, and leveraging natural language knowledge for
understanding code.

7.1 Novice Programmers

As a tool that is primarily targeted at programmers who are
novices to a programming language or paradigm, this work
has been influenced by research on novice programmers, as
well as some influence early in the design process from [33].

One pedagogical device for teaching programming is the
notional machine [4]. A notional machine is an abstract no-
tion of a physical machine that only contains the level of
detail needed to meet the desired level of understanding. A
student then has a mental model of the notional machine,
but this mental model may not be accurate. Thus, a goal
of teaching is to align the student’s mental model with the
notional machine. Notional machines could be used to teach
formal programming language semantics. A recent Dagstuhl
Seminar looked at ideas around formal programming lan-
guage semantics and notional machines [6]. One goal of
ExpLAINTHIS is to help build and correct students’ mental
models of the semantics of syntactic forms in Hazel. In this
way, the documentation tool is teaching a notional machine
of Hazel.

The computer science education community studies intro-
ductory programming and its challenges more broadly. One

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

literature review categorizes prior works’ characterization
of student knowledge into (1) syntactic knowledge, which is
the most basic and involves knowledge of language features;
(2) conceptual knowledge, which is related to mental models;
and (3) strategic knowledge, which involves applying syn-
tactic and conceptual knowledge to solve new problems [23].
Some of the misconceptions students may struggle with
described in this literature review include cognitive load,
mental models, and misuse of prior knowledge. Some miti-
gation strategies and tools described include visualizations,
novice friendly IDEs and programming languages, worked
examples, and teaching students to read code (not just write
code). Another recent literature review on introductory pro-
gramming focused on computing majors, not just computer
science, and included similar ideas to help novice program-
mers such as teaching code-reading, not just code-writing,
skills and discussion of cognitive load theory, which says
that students perform worse when they need to remember
more than can fit in their working memory [13]. We believe
that ExpLAINTHIS may help with a variety of these identified
struggles of novice coders, including learning to read code by
providing natural language explanations of syntactic forms.

Drawing on ideas from cognitive load theory, a study
looked for the modality effect in programming [14]. The
modality effect posits that using multiple senses to com-
municate complementary, but not duplicated, information
can improve learning. For instance, this may support the
teaching practice of live-coding where a teacher talks (audio)
about some code (visual). The study investigated if changing
the modality of instruction (text, oral, or both) improved
learning outcomes for information retention and transfer.
Interestingly, they did not find supporting evidence that the
modality principle held for programming. This may indicate
that textual explanations of code, such as those proposed for
Hazel, may still be effective for teaching students program-
ming even though novices may view code as text (whereas
experts view code more as diagrams) [14].

7.2 Contextualized Explanations

The design of ExpLAINTHIS is also influenced by recent work
and design recommendations for contextualized explana-
tions of technical information.

Recent work has gone into developing tools that give
users contextualized explanations in a variety of domains.
One such work is ScholarPhi [8]. This tool automatically
generates context-sensitive information about nonce words
in scientific papers. Nonce words are technical terms and
symbols that have a specific use in a specific paper. Key
features of ScholarPhi include tooltips for symbols that give
information such as definitions, greying out all text in a
paper other than what is relevant to a selected term, equation
diagrams that show multiple definitions of symbols in an
equation at the same time, and a glossary of terms in the
paper. The tool was designed following an iterative design

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

process and gives the following seven design principles for
"in-situ" definitions for scientific text [8]:

1. Tailor definitions to the location of appearance. Since
symbols in scientific text can have different meanings
throughout a text, the definitions shown should be
about the specific location the reader is in the text.

2. Connect readers to definitions in context. ScholarPhi
realizes this by including with definitions links to
where in the paper those definitions were given.

3. Consolidate information. This includes showing the
subsymbols information of a given symbol together.

4. Provide scent. Give indications to the reader for what
symbols they can get more information.

5. Minimize occlusion. Readers do not want important
text information to be hidden by the tool, but they
also do not want to lose where they are in the text by
having to look elsewhere for additional information.
ScholarPhi manages these two conflicting desires by
using condensed tooltips. Additional information can
be viewed in a sidebar.

6. Minimize distractions.

7. Support error recovery. Because the information used
in ScholarPhi is automatically generated from the sci-
entific text, there are possible errors from which the
reader needs to be able to recover.

ExpLAINTHIS tailors definitions to the particular use of a
syntactic form in the source program, showing clear links
between the code in the editor and explanations, including
information about subforms with the currently considered
syntactic form, not covering the code that is being investi-
gated, and minimizing distraction by allowing the user some
control over display highlighting (see Sec. 3).

Nota [3], a tool similar to ScholarPhi [8], is designed to
give a more interactive way to consume programming lan-
guage research literature than static PDFs. The tool works in
the browser and includes functionality such as dynamic code
snippets, tooltips, definitions and references, flexible layouts,
convenient importing of language grammars, interactive dia-
grams, a way to show and hide less critical information, and
buttons to toggle between more and less formal definitions.
Crichton designed Nota based on the following principles [3]:

1. A reader should always be able to access the definition
of a symbol.

2. Jumping around is bad — definitions should be visible
in context.

3. A static display is preferable to an interactive one, all
else being equal.

ExprLaINTHIs follows these principles, particularly that the
documentation is always available to the programmer be-
cause of Hazel’s semantic guarantees [18, 19] and that the
documentation is presented alongside the context in which
the syntactic form is used. We may consider providing an

Contextualized Programming Language Documentation

editable sandbox for programmers to interact with code ex-
amples in future iterations of our documentation design.

Another tool that gives contextualized explanations is
Tutorons [7]. This tool gives automatic and queryable ex-
planations for code that is found in online sources such as
web code tutorials. These explanations only give informa-
tion relevant to the specific use of the code that the user
is investigating. Explanations have multiple levels, includ-
ing high-level descriptions and more detailed information.
The system supports multiple languages, where each lan-
guage support is a Tutoron. The authors give the following
guidelines for explanations in their system [7]:

1. Use multiple representations to illuminate high-level
intent and enable low-level understanding of syntax.

2. Be concise — skip static explanations and focus on
dynamically generated content.

3. Reappropriate existing documentation.

4. Inspect code examples on a large scale to support ex-
planations of common usage.

ExpLAINTHIs gives multiple levels of explanations and uses
dynamically generated explanation content (see Sec. 3).

7.3 Natural Language

There has been research into making use of natural language
knowledge for performing programming tasks. Using fMRI,
Siegmund et al. showed that learners of a new programming
language leverage the same areas of the brain as those of
learners of a natural language [29]. A study of 49 schoolchil-
dren between the ages 9 and 13 showed that reading code
aloud improved their ability to remember the syntax, but did
not necessarily make a difference in their understanding of
the code [32]. Here we will describe two lines of work. One
aims at programming languages which have syntax that is
more reflective of natural language. Another aims at giving
natural language versions of code.

One study on the MOOSE programming language was
seeking to understand if there were potential downsides to
natural language programming, which has generally been
used for application-specific and end-user programming [2].
MOOSE is a programming language that was specifically
designed to be used by children to create text-based worlds.
The study looked at natural language errors in the language,
which were defined as errors where the command the child
was trying was more “English-like” than the correct com-
mand. The researchers looked at several children’s program-
ming logs and found that 10.6% of the programming errors
were natural-language errors, and 41.1% of these errors had
easy recovery. The researchers concluded that “making use
of people’s preexisting natural language knowledge is an
effective strategy for programming language design for chil-
dren, end users, and others new to coding.”

Other work has investigated the effectiveness of natural
language style programming languages. [31] investigated

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

the performance of first time programmers using one of
three languages: Quorum, Perl, and Randomo. Quorum is a
programming language that has been designed with heavy
emphasis on adhering to programming language usability
research, including a focus on using intuitive programming
language constructs. Perl is a traditional, multi-paradigm
programming language that uses constructs such as for
loops. Randomo is a “placebo-language” where some of the
syntax was chosen by generating random characters. Inter-
estingly, when comparing the performance of novices using
these different languages, the programmers using Quorum
were significantly more accurate at their tasks than the other
two languages and the programmers using Perl were not
significantly more accurate than the Randomo programmers.
An interesting consideration from the study design is that
programmers were given reference sheets and code sam-
ples for some of their tasks, but they were not specifically
taught the meaning of individual lines of code in the exam-
ples. Rather than focusing on changing language constructs,
ExpLAINTHISs seeks to leverage natural language knowledge
by explaining syntactic forms in natural language.

Another line of work translates code to natural language.
One example of this is automatic code summarization, such
as automatically generating method summaries. State-of-the-
art research has seen good results using natural language
processing techniques, combining information from the code
and the abstract syntax trees of the code to generate sum-
maries of methods [12]. However, recent work studied the
effectiveness of such automatically generated summaries
for programmer comprehension and found that traditional
measures of summary quality did not correlate strongly with
programmer comprehension, indicating a need to evaluate
the effectiveness of such summaries differently [30]. Another
line of research focuses on verbalization of code, rather than
summarization. This has been done for proofs generated by
proof assistants such as Nuprl [9] and Coq [1]. Similarly,
work has gone into automatically generating context-aware
“lexical simplifications,” which are substitutes for technical
terms in scientific text to terms that are understood by a
wider audience [10]. ExpLAINTHIS does not attempt to sum-
marize blocks of text. Rather, it performs a function closer to
verbalizing chunks of code, though with additional emphasis
on being explanatory and instructive.

Additional work has looked at integrating natural lan-
guage processing techniques into programming environ-
ments. CodeMend [27] is an integrated system that provides
suggestions, relevant syntactic forms, and documentation
based on the body of a program where the user intends to
insert new code. The user has the option to further refine the
results by providing a natural language query. CodeMend
can provide recommendations based solely on the user’s
code. However, its strength comes from its ability to allow
users to look up a specific API function using a text search.
CodeMend’s NLP model is trained to look up API functions

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

in the context of the lines of code surrounding where the
cursor is placed and return useful recommendations to the
developer, who may not be familiar with a specific API. Fu-
ture iterations of ExpLAINTHIS could include similar search
and complete functionalities for holes (incomplete parts) in
a program, making use of NLP techniques to improve the
amount of contextual information available to leverage.

8 Conclusion

As programmers learn different programming languages,
adaptive, contextual documentation provides quick access to
the level of information that a programmer needs to be pro-
ductive. We present an early exploration of the design space
of contextually adaptive programming language documenta-
tion systems, including a survey of current documentation
practices, an early design for a concrete system in Hazel,
and a formative evaluation of properties of explanations
and examples that experienced programmers view as benefi-
cial. Future directions of these documentation tools include:
adaptation to a programmers’ knowledge of the language
they are currently working in; customization based on other
known languages, explaining new concepts in terms of those
that are already understood; tailoring information based on
the specific use cases of the user, such as different forms of
documentation for one-off use versus trying to become an
expert; and more through evaluation of the tool in various
educational and development contexts.

Acknowledgments

We thank Andrew Blinn and David Moon for their help
with implementation work. We thank Eunice Jun and the
HSD team at the University of Washington for input on hu-
man subject studies. We thank Andrew Blinn and Benjamin
Kushigian for piloting our study. Also, we thank Steven L.
Tanimoto and the anonymous reviewers for their valuable
feedback on earlier versions of this paper.

References

[1] Andrew Bedford. 2017. Cogatoo: Generating Natural Language Ver-
sions of Coq Proofs. CoRR abs/1712.03894 (2017). arXiv:1712.03894
http://arxiv.org/abs/1712.03894

[2] Amy S. Bruckman and Elizabeth Edwards. 1999. Should we Leverage

Natural-Language Knowledge? An Analysis of User Errors in a Natural-

Language-Style Programming Language. In Proceeding of the CHI 99

Conference on Human Factors in Computing Systems: The CHI is the

Limit, Pittsburgh, PA, USA, May 15-20, 1999. ACM. https://doi.org/10.

1145/302979.303040

Will Crichton. 2021. A New Medium for Communicating Research

on Programming Languages. (2021). https://willcrichton.net/nota/

Accessed on 10.19.2022.

[4] Paul E. Dickson, Neil C. C. Brown, and Brett A. Becker. 2020. En-
gage Against the Machine: Rise of the Notional Machines as Effec-
tive Pedagogical Devices. In Proceedings of the 2020 ACM Confer-
ence on Innovation and Technology in Computer Science Education,
ITiCSE 2020, Trondheim, Norway, June 15-19, 2020. ACM. https:
//doi.org/10.1145/3341525.3387404

—
w
—_

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar

[5] Philip J. Guo. 2013. Online python tutor: embeddable web-based

program visualization for cs education. In The 44th ACM Technical

Symposium on Computer Science Education, SIGCSE 2013, Denver, CO,

USA, March 6-9, 2013. ACM. https://doi.org/10.1145/2445196.2445368

Mark Guzdial, Shriram Krishnamurthi, Juha Sorva, and Jan Vahrenhold.

2019. Notional Machines and Programming Language Semantics in

Education (Dagstuhl Seminar 19281). Dagstuhl Reports 9, 7 (2019).

https://doi.org/10.4230/DagRep.9.7.1

Andrew Head, Codanda Appachu, Marti A. Hearst, and Bjorn Hart-

mann. 2015. Tutorons: Generating context-relevant, on-demand ex-

planations and demonstrations of online code. In 2015 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, VL/HCC

2015, Atlanta, GA, USA, October 18-22, 2015. IEEE Computer Society.

https://doi.org/10.1109/VLHCC.2015.7356972

Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjons-

berg, Daniel S. Weld, and Marti A. Hearst. 2021. Augmenting Scientific

Papers with Just-in-Time, Position-Sensitive Definitions of Terms and

Symbols. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems (Yokohama, Japan) (CHI °21). Association for

Computing Machinery, Article 413. https://doi.org/10.1145/3411764.

3445648

Amanda M. Holland-Minkley, Regina Barzilay, and Robert L. Constable.

1999. Verbalization of High-Level Formal Proofs. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence and Eleventh

Conference on Innovative Applications of Artificial Intelligence, July

18-22, 1999, Orlando, Florida, USA. AAAI Press / The MIT Press. http:

//www.aaai.org/Library/AAAI/1999/aaai99-041.php

[10] Yea-Seul Kim, Jessica Hullman, Matthew Burgess, and Eytan Adar.
2016. SimpleScience: Lexical Simplification of Scientific Terminology.
In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4,
2016. The Association for Computational Linguistics. https://doi.org/
10.18653/v1/d16-1114

[11] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The
Design Space of Computational Notebooks: An Analysis of 60 Systems
in Academia and Industry. In IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2020, Dunedin, New Zealand,
August 10-14, 2020. IEEE. https://doi.org/10.1109/VL/HCC50065.2020.
9127201

[12] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural
model for generating natural language summaries of program subrou-
tines. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE /
ACM. https://doi.org/10.1109/ICSE.2019.00087

[13] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker,
Michail N. Giannakos, Amruth N. Kumar, Linda M. Ott, James Pa-
terson, Michael James Scott, Judy Sheard, and Claudia Szabo. 2018. In-
troductory programming: a systematic literature review. In Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 2018, Larnaca, Cyprus,
FJuly 02-04, 2018. ACM. https://doi.org/10.1145/3293881.3295779

[14] Briana B. Morrison. 2017. Dual Modality Code Explanations for
Novices: Unexpected Results. In Proceedings of the 2017 ACM Confer-
ence on International Computing Education Research, ICER 2017, Tacoma,
WA, USA, August 18-20, 2017. ACM. https://doi.org/10.1145/3105726.
3106191

[15] OCaml. 2022. OCaml. https://ocaml.org/ Accessed on 10.21.2022.

[16] Cyrus Omar. 2021. Hazel is a live functional programming environment
featuring typed holes. https://hazel.org/

[17] Cyrus Omar and Jonathan Aldrich. 2018. Reasonably programmable
literal notation. Proc. ACM Program. Lang. 2, ICFP (2018), 106:1-106:32.
https://doi.org/10.1145/3236801

[18] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.
Live functional programming with typed holes. Proc. ACM Program.

G

—

[7

—

8

—

[9

—

https://arxiv.org/abs/1712.03894
http://arxiv.org/abs/1712.03894
https://doi.org/10.1145/302979.303040
https://doi.org/10.1145/302979.303040
https://willcrichton.net/nota/
https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.4230/DagRep.9.7.1
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php
https://doi.org/10.18653/v1/d16-1114
https://doi.org/10.18653/v1/d16-1114
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3105726.3106191
https://doi.org/10.1145/3105726.3106191
https://ocaml.org/
https://hazel.org/
https://doi.org/10.1145/3236801

Contextualized Programming Language Documentation

[19]

[20]

Lang. 3, POPL (2019). https://doi.org/10.1145/3290327

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: a bidirectionally typed structure
editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. ACM. https://doi.org/10.1145/3009837.3009900

Cyrus Omar, lan Voysey, Michael Hilton, Joshua Sunshine, Claire Le
Goues, Jonathan Aldrich, and Matthew A. Hammer. 2017. Toward
Semantic Foundations for Program Editors. In 2nd Summit on Advances
in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar,
CA, USA (LIPIcs, Vol. 71). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik. https://doi.org/10.4230/LIPlcs.SNAPL.2017.11

Hannah Potter and Cyrus Omar. 2020. Hazel Tutor: Guiding Novices
Through Type-Driven Development Strategies. https://hazel.org/
hazeltutor-hatra2020.pdf

Pyret. 2022. Pyret. https://www.pyret.org/ Accessed on 10.21.2022.
Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review.
ACM Trans. Comput. Educ. 18,1 (2017). https://doi.org/10.1145/3077618
Racket. 2022. Racket. https://racket-lang.org/ Accessed on 10.21.2022.
Adrian E. Raftery, Hana Sevcikova, and Bernard W. Silverman. 2021.
The vote Package: Single Transferable Vote and Other Electoral Sys-
tems in R. R 7. 13, 2 (2021). https://doi.org/10.32614/rj-2021-086
Reason. 2022. Reason. https://reasonml.github.io/ Accessed on
10.21.2022.

Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar.
2016. CodeMend: Assisting Interactive Programming with Bimodal
Embedding. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, UIST 2016, Tokyo, Japan, October
16-19, 2016. ACM. https://doi.org/10.1145/2984511.2984544

[28]

[29]

[30]

[31]

[32]

[33]

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2022.
Here we go again: why is it difficult for developers to learn another
programming language? Commun. ACM 65, 3 (2022). https://doi.org/
10.1145/3511062

Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake, and André Brechmann. 2014.
Understanding understanding source code with functional magnetic
resonance imaging. In 36th International Conference on Software En-
gineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. ACM.
https://doi.org/10.1145/2568225.2568252

Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eber-
hart, Westley Weimer, Kevin Leach, and Yu Huang. 2020. A Human
Study of Comprehension and Code Summarization. In ICPC °20: 28th
International Conference on Program Comprehension, Seoul, Republic of
Korea, July 13-15, 2020. ACM. https://doi.org/10.1145/3387904.3389258
Andreas Stefik, Susanna Siebert, Melissa Stefik, and Kim Slattery. 2011.
An empirical comparison of the accuracy rates of novices using the
quorum, perl, and randomo programming languages. In Proceedings
of the 3rd ACM SIGPLAN workshop on Evaluation and usability of
programming languages and tools, PLATEAU 2011, Portland, OR, USA,
October 24, 2011. ACM. https://doi.org/10.1145/2089155.2089159
Alaaeddin Swidan and Felienne Hermans. 2019. The Effect of Reading
Code Aloud on Comprehension: An Empirical Study with School
Students. In Proceedings of the ACM Conference on Global Computing
Education, CompEd 2019, Chengdu,Sichuan, China, May 17-19, 2019.
ACM. https://doi.org/10.1145/3300115.3309504

Bret Victor. 2012. Learnable Programming: Designing a program-
ming system for understanding programs. http://worrydream.com/#!
/LearnableProgramming

Received 2022-07-12; accepted 2022-10-02

https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.4230/LIPIcs.SNAPL.2017.11
https://hazel.org/hazeltutor-hatra2020.pdf
https://hazel.org/hazeltutor-hatra2020.pdf
https://www.pyret.org/
https://doi.org/10.1145/3077618
https://racket-lang.org/
https://doi.org/10.32614/rj-2021-086
https://reasonml.github.io/
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/3511062
https://doi.org/10.1145/3511062
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/3387904.3389258
https://doi.org/10.1145/2089155.2089159
https://doi.org/10.1145/3300115.3309504
http://worrydream.com/#!/LearnableProgramming
http://worrydream.com/#!/LearnableProgramming

	Abstract
	1 Introduction
	2 Language Documentation Survey
	3 Design of ExplainThis
	3.1 ExplainThis by Example
	3.2 Hazel Tutor
	3.3 Syntactic Form
	3.4 Code Explanation
	3.5 Code Examples
	3.6 Other Features

	4 Evaluation Methodology
	4.1 Screening Survey
	4.2 Background Survey
	4.3 Interview
	4.4 Artifact Availability

	5 Results
	5.1 Participant Makeup
	5.2 Features of Explanations and Examples
	5.3 Rankings of Explanations and Examples
	5.4 Discussion
	5.5 Validity

	6 Future Work
	7 Related Work
	7.1 Novice Programmers
	7.2 Contextualized Explanations
	7.3 Natural Language

	8 Conclusion
	Acknowledgments
	References

