
Inferring Mutant Utility from Program Context

René Just
University of Massachusetts

Amherst, MA, USA
rjust@cs.umass.edu

Bob Kurtz
George Mason University

Fairfax, VA, USA
rkurtz2@gmu.edu

Paul Ammann
George Mason University

Fairfax, VA, USA
pammann@gmu.edu

ABSTRACT

Existing mutation techniques produce vast numbers of equivalent,

trivial, and redundant mutants. Selective mutation strategies aim to

reduce the inherent redundancy of full mutation analysis to obtain

most of its bene�t for a fraction of the cost. Unfortunately, recent

research has shown that there is no �xed selective mutation strategy

that is e�ective across a broad range of programs; the utility (i.e.,

usefulness) of a mutant produced by a given mutation operator

varies greatly across programs.

This paper hypothesizes that mutant utility, in terms of equiva-

lence, triviality, and dominance, can be predicted by incorporating

context information from the program in which the mutant is em-

bedded. Speci�cally, this paper (1) explains the intuition behind this

hypothesis with a motivational example, (2) proposes an approach

for modeling program context using a program’s abstract syntax

tree, and (3) proposes and evaluates a series of program-context

models for predicting mutant utility. The results for 129 mutation

operators show that program context information greatly increases

the ability to predict mutant utility. The results further show that

it is important to consider program context for individual mutation

operators rather than mutation operator groups.

CCS CONCEPTS

•Software and its engineering→Software testing and debug-

ging;

KEYWORDS

Mutation analysis, program mutation, program context, mutant

utility, equivalent mutants, trivial mutants

ACM Reference format:

René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility

from Program Context. In Proceedings of 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis , Santa Barbara, CA, USA, July

2017 (ISSTA’17), 11 pages.

DOI: 10.1145/3092703.3092732

1 INTRODUCTION

Consider an engineer attempting to evaluate her test suite with mu-

tation analysis [7]. A full-blown mutation analysis system produces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3092732

far more mutants than necessary or useful. Until recently, the ad-

vice to the engineer would have been to choose a do fewer approach

in which only a carefully chosen subset of the mutants was gen-

erated. Unfortunately, recent research has identi�ed fundamental

weaknesses in existing selective mutation approaches: all of them

are very likely to miss e�ective mutants on some programs [24],

and none of them is likely to greatly outperform random mutant

selection, a strategy that simply chooses a random subsample of the

generated mutants [9, 11]. This same research has shown that re-

dundancy in mutants can be precisely characterized with dominator

sets. In an empirical study, Ammann et al. showed that the domina-

tor sets averaged just 1.2% of the non-equivalent mutants—that is,

nearly 99% of the non-equivalent mutants were redundant [4]. In

other words, a small set of dominator mutants captures the power

of the full set of mutants generated by a typical mutation system.

The goal of selective mutation—�nding a small set of mutants

that retain the utility of the original set—is legitimate. The bad

news is that �nding dominator sets directly is undecidable and we

do not know how to choose a useful proxy while avoiding mutants

that are equivalent, trivial, or redundant. This paper is a �rst step

in addressing this problem.

1.1 Rationale of Our Approach

Why do existing selective mutation approaches fail? We conjecture

that a root problem, and perhaps the root problem, is that exist-

ing approaches to selective mutation take no account of program

context. For example, existing mutation approaches treat mutat-

ing a relational operator in a for loop test the same as mutating

a relational operator in an if statement. But many mutations of

relational operators in for loop tests are killed by every test case,

and hence useless. Others are equivalent, and hence worse than

useless. As another example, mutating an arithmetic operator in

the context of array indices is less likely to result in a dominator

mutant than mutating an arithmetic operator in other contexts. As

a third example, appending a post-increment operator (e.g., ++) to

a variable is less likely to generate a non-equivalent mutant if it

appears late in a computation, for the simple reason that there is

less likely to be a data �ow from the variable to the output.

Just et al. [20] showed that a strong coupling exists between

mutants and, through the test cases that detect them, 73% of real

faults. Allamanis et al. [3] proposed additional mutation operators

that further increase the ratio of coupled real faults. The increased

real-fault coupling, however, comes at the cost of signi�cantly more

mutants, most of which are redundant—reinforcing the need for

e�ective mutant selection. Hence, if the goal is to generate a small

set of mutants that are useful and highly coupled to likely real

faults, then context-based program mutation is the way to go. In

other words, to avoid equivalent, trivial, and redundant mutants,

program context must be taken into account.

284

https://www.acm.org/publications/policies/artifact-review-badging

ISSTA’17, July 2017, Santa Barbara, CA, USA René Just, Bob Kurtz, and Paul Ammann

1.2 Contributions

The hypothesis of this paper is that the selection of a set of e�ective

mutants must take into account the program context in which the

mutants are generated. The relationship between mutant utility

and program context may be quite complex, and hence we do not

propose to derive it theoretically. Rather, this paper shows that

program context information is useful for predicting mutant utility.

The speci�c contributions of this paper are:

• Insight into why program context is critical for assessing

mutant utility.

• Amodel of mutant utility in terms of equivalence, triviality,

and dominance.

• A model of program context based on neighboring nodes

in the abstract syntax tree.

• An empirical study that shows that program context is a

strong predictor for mutant utility.

2 BACKGROUND ON MUTATION ANALYSIS

Mutation testing [7] is a test criterion that generates a set of pro-

gram variants, called mutants, and then challenges the tester to

design tests that detect these mutants. A test that can distinguish

between a mutant and the original program is said to detect, or kill,

that mutant. In strong mutation testing, killing a mutant means that

the mutant and the original program generate di�erent outputs. In

weak mutation testing, killing a mutant means that the internal

program state of the mutant di�ers from the internal program state

of the original program at some point during execution.

A mutant is generated by a mutation operator, which is a pro-

gram transformation rule that generates a program variant of a

given program based on the occurrence of a particular syntactic

element. One example of a mutation operator is the replacement

of an instance of the arithmetic operator + with -. Speci�cally, if

a program contains an expression a + b, this mutation operator

creates a mutant where a - b replaces this expression. The muta-

tion is the syntactic change that a mutation operator introduces.

This paper considers �rst-order mutants, which means that each

program variant contains exactly one mutation.

A mutation operator is applied everywhere it is possible to do so.

In the example above, if the arithmetic operator + occurs multiple

times in a program, the mutation operator will create a separate

mutant for each occurrence. A mutation operator group is a group

of related mutation operators. For example, the AOR mutation

operator group, which includes the mutation operator above, is the

group of all mutation operators that replace an arithmetic operator.

Similarly, the ROR mutation operator group is the group of all

mutation operators that replace a relational operator.

2.1 Equivalent Mutants

A mutant may behave exactly as the original program on all inputs.

Such a mutant is called an equivalent mutant and cannot be killed.

As an example of an equivalent mutant, consider the following

comparison of two integers, which returns the smaller value of the

two: return (a < b) ? a : b. Replacing the relational operator

< with <= (return (a <= b) ? a : b) results in an equivalent

mutant—if a and b are equal, returning either value is correct, and

hence both implementations are semantically equivalent.

Given a set of mutants,M , a test setT is mutation-adequate with

respect toM i� for every non-equivalent mutantm inM , there is

some test t in T such that t killsm.

2.2 Trivial Mutants

Mutants vary widely in how di�cult it is to �nd a test case that kills

the mutant. A trivial mutant is one that is killed due to an exception

by every test case that covers and executes the mutated code loca-

tion. As an example, consider a for loop with a boundary check for

an array index (for (int i=0; i<numbers.length; ++i){...}).

If the index variable i is used to access the array numbers then a

mutation i<=numbers.length is trivial, as any test that reaches

the loop will terminate with an IndexOutOfBoundsException—the

last value for i is guaranteed to index numbers out of bounds.

2.3 Dominator Mutants

Mutation operators generate far more mutants than are necessary.

This redundancy was formally captured in the notion of minimal

mutation [4]. Give any set of mutants,M , a dominator set of mutants,

D, is a minimal subset ofM such that any test set that is mutation-

adequate for D is also mutation-adequate forM .

Computing a dominator set is an undecidable problem, but it is

possible to approximate it with respect to a test set [23]—the more

comprehensive the test set, the better the approximation. This

approximation is not useful for the practicing engineer, who needs

to know the set of dominator mutants a-priori to develop a test set.

However, from a research and evaluation perspective, a dominator

set provides a precise way for identifying redundancy in a set of

mutants, and hence the dynamic approximation approach is an

important research tool for analyzing mutation testing techniques.

Given a �nite set of mutantsM and a �nite set of testsT , mutant

mi is said to dynamically subsume mutantmj if some test in T kills

mi and every test inT that killsmi also killsmj . If two mutantsmi

andmj inM are killed by exactly the same tests in T , we say that

mi andmj are indistinguished.

We capture the subsumption relationship among mutants with

the Dynamic Mutant Subsumption Graph or DMSG [23]. Each node

in a DMSG represents a maximal set of indistinguished mutants

and each edge represents the dynamic subsumption relationship be-

tween two sets of mutants. More speci�cally, ifmi dynamically sub-

sumesmj , then there is an edge from the node containingmi to the

node containingmj . Further, ifmi dynamically subsumesmj but the

converse is not true, we say that the subsumption is strict. If a test

kills any arbitrary mutant in the DMSG, it is guaranteed to kill all

the subsumed mutants [4], i.e., all mutants below it in the graph.

Table 1 shows an example kill matrix that indicates which test

kills which mutants. In this example, the set M consists of 14

mutants and the set T consists of 4 tests. Every test that kills

m12 also killsm3,m6, andm11. Hence,m12 dynamically subsumes

these mutants. In the case of the �rst two mutants, the dynamic

subsumption is strict. However,m11 andm12 are killed by exactly

the same tests, so the subsumption is not strict; these mutants are

indistinguished.

We use the subsumption relationships to construct the DMSG

shown in Figure 1. Mutantsm1 andm10 are not killed by any of the

tests in T—shown in the unconnected node with a dashed border.

285

Inferring Mutant Utility from Program Context ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Example kill matrix.
A check mark indicates that a test ti kills a mutantmj . Context refers to
the lexically enclosing statement of the relational operators in Figure 3.

Mutant Test

Group Operator Context t1 t2 t3 t4

m1: ROR < 7−→ != for

m2: ROR < 7−→ == for

m3: ROR < 7−→ <= for

m4: ROR < 7−→ > for

m5: ROR < 7−→ >= for

m6: ROR < 7−→ true for

m7: ROR < 7−→ false for

m8: ROR < 7−→ != if

m9: ROR < 7−→ == if

m10: ROR < 7−→ <= if

m11: ROR < 7−→ > if

m12: ROR < 7−→ >= if

m13: ROR < 7−→ true if

m14: ROR < 7−→ false if

These mutants are equivalent with respect to T but they may be

killable by a test that is not an element ofT . The DMSG is based on

a �nite test set, so it can only make claims about test equivalence.

Dominator mutants are those not strictly subsumed by any other

mutant and are shown in the graph in dominator nodes with double

borders. Figure 1 has two dominator nodes and any combination of

one mutant from each dominator node forms a dominator mutant

set. Hence, Figure 1 has 4 ∗ 2 = 8 distinct dominator mutant sets;

{m4,m8} is an example. Because each dominator set contains one

mutant from each dominator node, all dominator sets are equally

useful and a dominator set can be selected arbitrarily from all

possible sets. Consequently, only two of the 14 mutants matter—if a

test set kills the mutants in a dominator mutant set, it is guaranteed

to kill all non-equivalent mutants, which are redundant.

For completeness, Figure 2 shows the static subsumption relation

for the mutants of the relational operator <, analyzed in isolation.

The top row in Figure 2 shows the three dominator mutants—the

mutants that replace <with false, <=, and != subsume all the others.

Note that this dominance relation only holds for weak mutation

testing [25], and that it assumes that none of the dominators is

equivalent. Section 4 revisits the examples in Figure 1 and 2, and

shows that one of the mutation operators (< 7−→ !=) indeed produces

an equivalent mutant in the context of an example program.

3 MUTANT UTILITY

Informally, dominator mutants and mutants high in the mutant

subsumption graph have high utility, and equivalent and trivial

mutants have low utility. This section makes the notion of mutant

utility precise along each of three dimensions of equivalence, trivial-

ity, and dominance. Section 5.8 shows how these three dimensions

might be combined into an overall notion of mutant utility.

3.1 Equivalence

Ideally, a mutation system would not generate any equivalent mu-

tants, but since mutant equivalence, or program equivalence, is

m4, m7,
m9, m14

m8, m13

m2, m5 m11, m12

m3, m6

m1, m10

Figure 1: Dynamic mutant subsumption graph (DMSG) for

the kill matrix shown in Table 1.

false

== >

<=

true

!=

>=

Figure 2: Static subsumption for the relational operator < [22].

an undecidable problem, this goal cannot be achieved in general.

Instead, our approach is to rank mutants by estimating how likely

they are to be equivalent. Speci�cally, mutant utility with respect

to equivalence is an estimate of the likelihood that the mutant is

equivalent. Program context is useful if it enables us to re�ne our

estimate of equivalence for a given mutant. The farther the re�ned

estimate is from the base (in either direction) and the closer it is to

the ground truth, the more useful the context.

Formally, equivalence utility for a mutantm with respect to a

mutation operator groupG is the likelihood that an arbitrarymutant

produced by some Op in G is equivalent. Similarly, equivalence

utility for a mutantm with respect to a mutation operatorOp is the

likelihood that an arbitrary mutant produced by Op is equivalent.

Finally, equivalence utility for a mutantm with respect to a mutant

operatorOp and context c is the likelihood that an arbitrary mutant

produced by Op in context c is equivalent.

3.2 Triviality

Since mutation analysis requires more human and compute time

than coverage criteria such as branch coverage, mutants that are

always killed by branch-adequate test suites are not of practical

value. One of our goals is to identify non-trivial mutants. Again,

program context is useful if it enables us to re�ne our estimate of

triviality for a given mutant.

The utility de�nitions for triviality are an exact parallel of the

utility de�nitions for equivalence.

3.3 Dominance

Mutants that are not dominators, but are “close” to being domina-

tors, are still valuable. For this paper, we need a metric that captures

this observation. To this end, we propose the dominator strength

metric that satis�es three important properties: it is monotonically

increasing along any path in the DMSG, it is fairly evenly distributed

between 0 and 1, and it is insensitive to redundant mutants.

286

ISSTA’17, July 2017, Santa Barbara, CA, USA René Just, Bob Kurtz, and Paul Ammann

1 /*

2 * Compute the minimum value of a non -null ,

3 * non -empty array of integers.

4 */

5 public int getMin(int[] numbers) {

6 int min = numbers [0];

7 for (int i=1; i < numbers.length; ++i) {

8 if (numbers[i] < min) {

9 min = numbers[i];

10 }

11 }

12 return min;

13 }

Figure 3: Relational operator in two di�erent program contexts.

We de�ne the dominator strength sD (M) for any mutantM as

the number of nodes in the graph that are subsumed byM , divided

by the number of nodes in the graph subsumed by M plus the

number of nodes in the graph that subsumeM :

sD (M) =
#nodes M subsumes

#nodes M subsumes + #nodes that subsume M

sD = 1 identi�es a dominator mutant and sD = 0 identi�es a mutant

that does not strictly subsume any other mutants. As an example,

in Figure 1, sD (m12) = 1/(1 + 2) = 0.33.

The utility de�nitions for dominance are an exact parallel of

the utility de�nitions for equivalence. Note that in contrast to

equivalence and triviality, higher dominance is better.

4 PROGRAM CONTEXT

This section �rst informally describes the notion of program context

using a motivational example (Section 4.1) and then details our

proposed approach to modeling program context (Section 4.2).

4.1 Motivational Example

Consider the program listing in Figure 3. The following seven mu-

tation operators are applicable to each of the highlighted program

locations (lines 7 and 8), where lhs and rhs are meta-variables:

Op1: lhs < rhs 7−→ lhs != rhs

Op2: lhs < rhs 7−→ lhs == rhs

Op3: lhs < rhs 7−→ lhs <= rhs

Op4: lhs < rhs 7−→ lhs > rhs

Op5: lhs < rhs 7−→ lhs >= rhs

Op6: lhs < rhs 7−→ true

Op7: lhs < rhs 7−→ false

The utility of the mutants that these mutation operators generate

depends on the program context, as Table 2 shows.

Table 2 corroborates that any approach that universally selects

and applies a subset of mutation operators—even within a single

program—is doomed to failure. For example, the mutation opera-

tor Op1 generates an equivalent mutant in line 7 but a dominator

mutant in line 8. This means that the inclusion of Op1 is crucial

but at the same time that this operator should never be applied in a

context similar to the one in line 7. This example motivates our goal

of capturing the notion of program context more precisely with the

ultimate goal of learning what mutation operator is most likely to

generate an equivalent, trivial, or dominator mutant in what pro-

gram context. Figure 1 (dynamic subsumption) and Figure 2 (static

Table 2: Mutant utility depending on program context.
For each of the seven mutation operators, applied to each of the highlighted
program locations in Figure 3, is the generated mutant a dominator (dom.),
subsumed (sub.), trivial (triv.), or equivalent (equi.) mutant?

Location Op1 Op2 Op3 Op4 Op5 Op6 Op7

Line 7 equi. sub. triv. dom. sub. triv. dom.

Line 8 dom. sub. equi. sub. sub. dom. sub.

subsumption) illustrate exactly this same point: the subsumption

relations change when the mutations are considered in context.

An immediate follow-up question to this motivational example

is whether this occurs in practice. To this end, we conducted an

exploratory study, using the Lang-1 subject from the Defects4J

benchmark. The test suite of Lang-1 achieves 98.2% statement

coverage and kills 216 out of 508 ROR mutants that are generated

by applying Op1. The remaining 292 mutants are test-equivalent

and, given the strength of the test suite, a large fraction of them

is very likely to be equivalent. Hence, absent context information,

the estimate that an Op1 mutant is equivalent is 292/508 or 57%.

Incorporating context information and considering only muta-

tions generated by Op1 in the condition of a for loop, reduces the

number of mutants from 508 to 165. Of these, 11 mutants are killed

and 154 mutants are equivalent. Therefore, considering just the

enclosing statement changes the estimate that an Op1 mutation in

a for loop context is equivalent from 57% to 93%. This enclosing

statement context, all by itself, already provides a very strong sig-

nal for the equivalence of mutants generated by Op1. Subsequent

manual analysis revealed that for each of the 11 killed Op1 mutants,

there is additional context information that could be exploited to

predict whether or not that mutant is equivalent. For example,

some of these for loops start at a variable index instead of 0 or 1.

4.2 Modeling Program Context
Rather than prede�ning a very small set of exclusion patterns that

provably generate equivalent or trivial mutants, we generalize this

notion of patterns to program context. In particular, we model

program context using the program’s abstract syntax tree (AST).

In contrast to the purely syntactic level, the AST provides a higher

level of abstraction and semantic information. This allows us to

abstract over potentially irrelevant details, such as identi�er names,

and to exploit information about data types and scopes. Figure 4

shows the partial AST for the getMin method from Figure 3.

Our ultimate goal is to apply machine learning on labeled ASTs

to train a classi�er that can predict mutant utility, given a mutation

operator and a program’s AST. As a �rst step, this paper explores

di�erent dimensions of program context to guide future research

on developing more complex program context models.

4.2.1 Parent Context. Our approach traverses the AST and com-

putes the sequence of AST nodes, from the target node to the root

node. Such a traversal can generate AST node sequences at di�erent

levels of abstraction, as shown in Figure 5. The sequence of AST

nodes allows us to predict mutant utility using only the parent state-

ment node, the entire sequence, or n-grams of that sequence. In Fig-

ure 4, the parent statement of the target node is an if statement.

As an example, consider the expression lhs < rhs and themutation

operator Op1 from the motivational example, which changes the

relational operator from < to !=. This mutation is much more likely

to be equivalent in a for loop than in an if statement context.

287

Inferring Mutant Utility from Program Context ISSTA’17, July 2017, Santa Barbara, CA, USA

...

MethodDecl
getMin

... ... Block

body

ForStmt ReturnStmt

VarDecl

init

InfixExpr
<

cond

PrefixExpr
++

inc

Block

body

Type
int

type

Ident
i

name

Literal
1

init

Ident
i

lhs

QualIdent

rhs

Ident
numbers

Ident
length

Ident
i

IfStmt

InfixExpr
<

cond

...

then

...

else

ArrayAccess

lhs

Ident
min

rhs

Ident
numbers

Ident
i

Ident
min

Mutation:
< 7−→ !=

Mutation:
< 7−→ ==

Mutation:
< 7−→ <=

Mutation:
< 7−→ >

Mutation:
< 7−→ >=

Mutation:
< 7−→ true

Mutation:
< 7−→ false

operator identi�er

Figure 4: Partial AST for the getMin method (Figure 3) and
seven possiblemutations for the highlighted target ASTnode.

MethodDecl ForStmt IfStmt
Mutation:

< 7−→ !=

MethodDecl
:body:

Block
ForStmt
:body:

Block
IfStmt
:cond:

Mutation:
< 7−→ !=

Figure 5: Two parent node sequences for the mutation opera-
torOp

1
applied to the highlighted target ASTnode in Figure 4.

The two sequences represent the same path in the AST at di�erent levels of
abstraction: the �rst sequence includes only nodes that represent a top-level
statement, whereas the second includes all nodes plus edge labels.

4.2.2 Children Context. Our approach considers the node types

of the target AST node’s children. In particular, it determines

whether any of the child nodes represents a literal value, an iden-

ti�er, or an operator. In Figure 4, the target node has two child

nodes—an operator node (ArrayAccess) and an identi�er node (min).

As an example, consider the statement if (lhs & rhs), where lhs

and rhs are expressions, and a mutation operator that changes the

operator & to the short-circuit operator &&. If rhs is a literal value

or an identi�er, then the mutant is equivalent. However, if rhs is a

side-e�ecting operator or method call, then the mutant may not be

equivalent—if lhs evaluates to false, the missing side e�ect of the

mutant may lead to its detection.

4.2.3 Data Type Context. Our approach considers, in addition

to the structural parent and children contexts, the data type context

of the target AST node. Depending on the target node, this includes

the data types of operands or formal parameters and the return type.

In Figure 4, the data type of the target node is (int,int)boolean.

As an example, consider the expression lhs < rhs and a muta-

tion operator that changes the relational operator from < to <=.

Knowing whether this comparison is integer vs. �oating point

leads to di�erent expectations about mutant utility: mutating

a �oating point comparison is highly unlikely to lead to an

ArrayIndexOutOfBoundsException—neither lhs nor rhs is likely to

be used as an array index. On the other hand, the same mutation

on integers is likely to lead to this exception if lhs or rhs is used

as an array index. Moreover, di�erentiating < from <= is straight

forward for integers but quite complex for �oating point numbers.

Hence, such a mutation is more likely to be equivalent for �oating

point numbers than for integers.

4.2.4 Other Types of Context. The AST provides additional pro-

gram context information, not studied in this paper. This includes,

amongst others, information about the scope and visibility of a

variable, or the program’s control and data �ow.

As an example, consider mutating an assignment to a global

vs. local variable. The persistence of a global variable means that

mutations to its value are far less likely to be equivalent.

5 EVALUATION
The goal of this empirical evaluation is to study whether program

context a�ects mutant utility and what dimensions of program

context are strong predictors for what dimension of mutant utility.

5.1 Subjects
We employed the Defects4J benchmark [19] (v1.0.1), which provides

a set of 357 subjects, each accompanied by a thorough, developer-

written test suite. For each subject, Defects4J provides a buggy and

a �xed program version. The di�erence between the two versions

is a set of classes that a developer �xed—the set of modi�ed classes.

We selected 163 subjects from the Defects4J benchmark where

the test suite achieved at least 95% statement coverage on all modi-

�ed classes. Since this study approximates mutant utility using test

execution information (see Section 5.3), we selected these subjects

because of their thorough test suites.

We employed theMajor mutation framework [16] (v.1.3.2) to gen-

erate mutants for the modi�ed classes for these subjects, perform

a mutation analysis using the subjects’ test suites, and compute

the kill matrix (i.e., execute all tests against all mutants) for each

subject. Major could not generate the kill matrix for 56 out of 163

subjects due to a computational timeout of 48 CPU hours. Note

that the expected runtime to compute the kill matrix for some of

the Defects4J subjects is beyond 100 CPU days [33].

An automated step then �ltered the remaining 107 subjects to

remove subjects containing duplicate classes (and thus removed

the possibility of duplicate mutants) using the following procedure:

(1) When two or more subjects contain the same classes, retain

only the subject with the highest statement coverage.

(2) When two or more subjects contain the same classes and

have the same statement coverage, retain only the subject

with the largest number of test cases.

(3) When two or more subjects contain the same classes, have

the same statement coverage, and have the same number of

test cases, retain only the subject with the newest version

of the subject source code.

288

ISSTA’17, July 2017, Santa Barbara, CA, USA René Just, Bob Kurtz, and Paul Ammann

Table 3: Summary of investigated mutation operator groups and mutants.

Dominator strength gives the average dominator strength for all killed mutants, Covering tests gives the average number of tests that cover each covered
mutant, and Killing tests gives the average number of tests that kill each covered mutant. The highlighted rows indicate discarded mutation operator groups,
which do not contribute enough mutants for the empirical study and which are not included in the Retained row.

Group Total Covered Killed Dominator Trivial Dominator Covering Killing

mutants mutants mutants mutants mutants stength tests tests

AOR 14868 14804 (99.6%) 13483 (91.1%) 4099 (27.7%) 1760 (11.9%) 0.666 44.1 20.1

COR 12097 12043 (99.6%) 9665 (80.3%) 4035 (33.5%) 1246 (10.3%) 0.701 76.7 26.3

EVR 4321 4214 (97.5%) 4024 (95.5%) 1201 (28.5%) 1241 (29.4%) 0.573 76.0 44.0

LOR 404 362 (89.6%) 311 (85.9%) 120 (33.1%) 9 (2.5%) 0.691 275.6 21.9

LVR 14321 13992 (97.7%) 11298 (80.7%) 4979 (35.6%) 2881 (20.6%) 0.695 105.3 16.2

ORU 601 591 (98.3%) 538 (91.0%) 172 (29.1%) 18 (3.0%) 0.675 442.2 20.3

ROR 27900 27668 (99.2%) 22822 (82.5%) 9977 (36.1%) 3874 (14.0%) 0.676 46.1 18.8

SOR 196 190 (96.9%) 170 (89.5%) 69 (36.3%) 1 (0.5%) 0.785 520.7 7.2

STD 7065 6858 (97.1%) 5840 (85.2%) 2568 (37.4%) 1025 (14.9%) 0.742 62.2 22.6

Retained 80572 79579 (98.8%) 67132 (84.4%) 26859 (33.8%) 12027 (15.1%) 0.680 63.8 25.7

This �ltering process resulted in 981 subjects for which Major gen-

erated a total of 81,773 mutants. Table 3 provides a breakdown

of these generated mutants across mutation operator groups. In

contrast to the other mutation operator groups, LOR, ORU, and

SOR yielded very few mutants. To avoid spurious results due to

insu�cient sample sizes, we discarded the 1,201 mutants from these

three mutation operator groups (1.5% of all mutants). The mutants

from these mutation operator groups, shown in gray in Table 3,

are not included in the “Retained” row of the table. Of the 80,572

retained mutants, 993 were not covered by any test and from the

evaluation, leaving 79,579 mutants for analysis. These remaining

mutants were covered by an average of 63.8 tests per mutant, with

67,132 mutants (84.4%) killed by an average of 25.7 tests per mutant.

In addition to the breakdown of killed mutants, dominator mu-

tants, and trivial mutants, Table 3 gives, for each mutation operator

group, the average dominator strength and the average number of

tests that cover and kill a mutant of that group.

5.2 Mutation Operator Groups and Operators
This study considers the following six mutation operator groups:

(1) AOR: Arithmetic operator replacement

(2) COR: Conditional operator replacement

(3) EVR: Expression value replacement

(4) LVR: Literal value replacement

(5) ROR: Relational operator replacement

(6) STD: Statement deletion

In addition to the mutation operator groups, this study analyzes

the 129 individual mutation operators to determine the e�ect of

program context on each mutation operator.

5.3 Mutant Utility
This study explores three dimensions of mutant utility (Section 3):

(1) Equivalence

(2) Triviality

(3) Dominance

1Chart-24, Closure-{1, 5, 8, 9, 12, 13, 14, 15, 28, 36, 46, 49, 55, 58, 67, 72, 88, 89, 91, 92,
98, 102, 103, 108, 111, 116, 124, 130, 132}, Lang-{1, 2, 4, 11, 14, 21, 22, 25, 28, 31, 33, 37,
40, 44, 45, 49, 51, 53, 54, 55, 58, 59, 62}, Math-{1, 2, 4, 5, 7, 10, 15, 21, 22, 25, 26, 28, 33,
35, 39, 40, 42, 44, 51, 52, 57, 68, 69, 71, 72, 76, 79, 82, 84, 86, 89, 91, 95, 96, 100, 103, 105},
Time-{3, 4, 5, 7, 10, 17, 21, 22}

Since ground truth about each of the three dimensions of mutant

utility is, in general, undecidable, we resort to approximations

in this paper, using the thorough test suites that accompany the

study subjects. Speci�cally, we use unkilled mutants as a proxy

for equivalent mutants, exceptional behavior as a proxy for trivial

mutants, and the DMSGs computed from the test suites as a proxy

for the truemutant subsumption relationships. Section 5.9 discusses

threats to validity and the implications of these approximations.

5.4 Program Context

Recall that our overall goal is to identify what dimensions of pro-

gram context are most likely to predict whether a mutation operator

generates an equivalent, trivial, or dominator mutant. This study

investigates the following three dimensions of program context:

(1) Parent statement context:

The type of the nearest ancestor AST node that corresponds

to a top-level statement, annotated (where applicable) with

the relationship between the mutated node and that parent

statement node. Figures 4 and 5 give an example for such

an annotated relationship, where the mutated node is the

child node of an if statement condition (IfStmt:cond:).

(2) Children context:

• Has literal child: indicates whether any immediate

child node of the mutated AST node is a literal.

• Has identi�er child: indicates whether any immediate

child node of the mutated AST node is an identi�er.

• Has operator child: indicates whether any immediate

child node of the mutated AST node is an operator.

It is possible for a mutated AST node that none or more

than one of the above applies. Figure 4 gives an exam-

ple, where the mutated AST node has both, an operator

(ArrayAccess) and an identi�er (min) child node.

(3) Data type context:

The data type of the mutated AST node. Figure 4 gives

an example for a relational operator, where the data type

includes the types of the operands and the return type

((int,int)boolean).

289

Inferring Mutant Utility from Program Context ISSTA’17, July 2017, Santa Barbara, CA, USA

5.5 Results
This section discusses the results for parent statement context,

which showed the strongest signal for mutant utility in isolation.

Section 5.7 quanti�es the results for each dimension of program

context in isolation and in combination with the other two.

Each of Figures 6a, 6b, and 6c displays the expected mutant

utility at three levels of granularity. The �rst level is the mutation

operator group level. For example, in each �gure, the �rst row

in the �rst column shows the expected mutant utility for all AOR

mutants. The second level is the mutation operator level. For

example, in each �gure, the second row in the �rst column shows

the expected mutant utility for all mutants generated by each of

the AOR mutation operators. The third level puts each mutation

operator into context—that is, it associates each mutation operator

with parent statement context. For example, in each �gure, the

third row in the �rst column shows the expected mutant utility for

all mutants generated by each of the AOR mutation operators in

a particular parent statement context. Note that the third row in

each �gure only shows a mutation operator in a parent statement

context if that operator yielded at least ten mutants in that context;

this excludes 1.7% of all mutants.

Since very low and very high values are of most interest, the

x-axis for each graph in each column shows data sorted in non-

descending order. Informally, “�at” graphs are “bad”, in that they do

not convey much predictive power as to mutant utility, but graphs

with “low” and/or “high” values are “good”, in that these regions

identify mutants that are either desirable or should be avoided.

5.5.1 Equivalence. Figure 6a shows the impact of the program

context on the expected mutant utility considering only equiva-

lence. The top row of the �gure shows that there is not much

variance between the six mutation operator groups that we studied.

In particular, trying to predict likely equivalent mutants from mu-

tation operator groups is hopeless. The second row in the �gure

shows that there is some variance between mutation operators,

both within and between mutation operator groups. For example,

while the expected mutant utility shows almost no variation for

AOR and STD mutation operators, some COR and ROR mutation

operators are much more likely to generate equivalent mutants

than others. Adding parent statement context information, as is

shown in the last row of the �gure further increases this variance.

In particular, the context information allows one to identify some

COR, EVR and ROR mutation operators—the ones at the right hand

edge of the graph—that are highly likely to generate equivalent

mutants in a particular context. Conversely, the left edge of each

graph shows mutation operators in contexts where they are much

less likely to generate equivalent mutants.

Figure 6a shows a strong signal that certain mutation operators

are very likely to generate equivalent mutants in certain parent

statement contexts, and also that others are very unlikely to gener-

ate equivalent mutants in other contexts. In terms of our motiva-

tional example, the combination of the Op1 ROR mutation operator,

which replaces the relational operator <with != and the for loop par-

ent statement context appears near the right hand side of the third

row, �fth column graph, precisely because this combination ofmuta-

tion operator and parent statement context is highly likely to gener-

ate an equivalent mutant. Hence, a context-aware mutation system

should not apply this mutation operator in that program context.

5.5.2 Triviality. Figure 6b shows the impact of the program con-

text on the expected mutant utility considering only triviality. The

top row of Figure 6b shows that for all mutation operator groups,

roughly 20% of the generated mutants are trivial. The top row,

however, does not give any guidance as to which of these mutation

operator groups are more likely to generate trivial mutants than

others. Breaking the analysis down by mutation operator signi�-

cantly improves matters. For example, the third graph in the second

row shows that some EVR operators are highly unlikely to generate

a trivial mutant, while other EVR operators are highly likely to do

so. Adding parent statement context information, as shown in the

third row improves the prediction of triviality even more.

5.5.3 Dominance. Figure 6c shows the impact of the program

context on the expected mutant utility considering only dominance.

Again, knowing just the mutation operator group is not enough to

make a meaningful prediction of dominator strength. Adding in

the speci�c mutation operator adds some predictive power, but not

nearly as much as also including the parent statement context, as

shown in the last row. However, the results for dominance show

less di�erentiation compared to equivalence and triviality.

5.6 Comparison with Random Selection

To ensure that our results were not simply an artifact of group-

ing smaller numbers of mutants together, we performed a con-

trol experiment using random mutant selection, duplicating our

context-based selection process as closely as possible. For each bar

in Figures 6a–6c, which represents the expected mutant utility for a

set of grouped mutants, we substituted an identical number of mu-

tants randomly chosen from the entire set of mutants. We repeated

this randomized process 100 times. The error bars in Figures 6a–6c

show the results in terms of mean expected mutant utility and 90%

con�dence interval. The random selection results show very little

di�erentiation in expected mutant utility compared to our new

selection process.

Additionally, we computed the 90% con�dence interval for the

expectedmutant utility for eachmutation operator in a given parent

statement context using bootstrapping [8] with 1000 iterations;

Figure 7 shows the results. While the con�dence intervals show

some variance for smaller groups of mutants, program context still

provides a clear signal for mutant utility. Overall, we conclude that

the di�erentiation of results is indeed due to program context and

not a sampling artifact.

5.7 Predicting Mutant Utility

We assessed the predictive power of program context in a cross val-

idation experiment, studying which dimension of program context

best predicts mutant utility in isolation and whether the combina-

tion of multiple dimensions improves over the strongest predictor.

Speci�cally, we performed repeated random subsampling (100

runs), randomly splitting the set of all mutants into a training set

(80% of the mutants) and a test set (the remaining 20% of the mu-

tants). For each dimension of mutant utility (equivalence, triviality,

and dominance), we computed the expected mutant utility for each

mutation operator group and individual mutation operator, with

and without incorporating program context information, on the

training set. Using the expected mutant utility as a predictor, we

290

ISSTA’17, July 2017, Santa Barbara, CA, USA René Just, Bob Kurtz, and Paul Ammann

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

E
q
u
iv

al
en

ce

Mutation operator group

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

E
q
u
iv

al
en

ce

Mutation operator

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

E
q
u
iv

al
en

ce

Mutation operator + Parent statement context

(a) Equivalence

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

T
ri

v
ia

li
ty

Mutation operator group

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

T
ri

v
ia

li
ty

Mutation operator

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

T
ri

v
ia

li
ty

Mutation operator + Parent statement context

(b) Triviality

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

D
o
m

in
an

ce

Mutation operator group

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

D
o
m

in
an

ce

Mutation operator

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

D
o
m

in
an

ce

Mutation operator + Parent statement context

(c) Dominance

Figure 6: Expected mutant utility for a) equivalence, b) triviality, and c) dominance, with and without considering program context.
For each of equivalence, triviality, and dominance, each gray bar gives the expected mutant utility for a set of mutants grouped together by mutation operator
group (top row), mutation operator (middle row), or mutation operator in a given parent statement context (bottom row). The corresponding error bar shows
the expected mutant utility for a set of randomly selected mutants that has equal cardinality.

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

E
q
u
iv

al
en

ce

Mutation operator + Parent statement context

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

T
ri

v
ia

li
ty

AOR COR EVR LVR ROR STD

0.0

0.5

1.0

D
o
m

in
an

ce

Figure 7: Bootstrap con�dence intervals for the expected mutant utility for each mutation operator in a given parent statement context.

291

Inferring Mutant Utility from Program Context ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 4: Cross-validation results: Improved prediction of

mutant utility when incorporating program context.
Improvements shown as the reduction of the cross-validation test error. A
higher reduction is better, 0% indicates a prediction that is no better than
random, and 100% indicates a perfect prediction. Grp denotes mutation
operator group, Op denotes mutation operator, PC denotes parent statement
context, CC denotes children context, and TC denotes data type context.

Utility Grp Grp Grp + Op
+ +

Op PC CC TC PC+CC+TC PC CC TC PC+CC+TC

Equi. 2% 13% 5% 2% 3% 6% 20% 15% 14% 23%

Triv. 2% 9% 5% 3% 8% 10% 14% 12% 13% 19%

Dom. 1% 3% 3% 1% 1% 3% 6% 4% 4% 8%

then computed the prediction error for each mutant in the test

set. For approximately 1.5% of all tested mutants across all 100

runs, all mutants associated with a particular mutation operator

and program context ended up in the test set, precluding the com-

putation of the expected mutant utility for those mutants on the

training set. In these cases, we resorted to the expected mutant

utility of the mutation operator that generated the mutants. Finally,

we computed the mean squared error over all runs and all mutants.

Table 4 quanti�es the results for all three dimensions of mutant

utility in terms of reduction of the mean squared error in compar-

ison to a baseline, which simply computes the expected mutant

utility over all mutants in the training set. The table shows how

each dimension of program context, in isolation and in combination

with the other two, improves the prediction of mutant utility. For

comparison, the table also shows the reduction of the mean squared

error when predicting mutant utility based on mutation operator

groups (Grp) and individual mutation operators (Op). Note that this

experiment aims to compare the relative performance of individual

predictors and that training an actual machine learning classi�er is

likely to yield larger error reductions.

Parent statement context is the strongest predictor of mutant

utility in isolation, but adding children and data type context shows

additional improvements. This suggests that more complex pro-

gram context models should consider and re�ne all three dimen-

sions. The results also show that program context information

should be considered for individual mutation operators rather than

mutation operator groups.

5.8 Context-Based Mutant Selection
Sections 5.5–5.7 show the results for each of the three dimensions

of mutant utility (equivalence, triviality, and dominance) in isola-

tion. These results suggest that program context is indeed a strong

predictor of mutant utility, but individually they do not provide

enough information to select mutation operators in particular pro-

gram contexts that yield predominantly dominator mutants with

few equivalent and trivial mutants. To do that e�ectively, we must

consider the expected mutant utility of mutation operators and

program contexts in multiple dimensions.

Figure 8 shows the distribution of the expected mutant utility

and explores whether mutant utility can be optimized along all

three dimensions. Each data point represents the expected mutant

utility of a particular mutation operator in a particular program

context. The green color coded operator/context combinations

close to (1, 1, 1) generate highly desirable mutants—high expected

dominance with very low expected equivalence and triviality. In

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

non−equivalent

non−
trivial

d
o
m

in
at

o
r

Figure 8: Distribution of the expected mutant utility.
Each data point represents the expected utility of a mutant generated by a
particular mutation operator in a particular program context.

contrast, the red color coded operator/context combinations close

to (0, 1, 0) and (1, 0, 0) generate highly undesirable mutants—low

expected dominance with very high equivalence or triviality.

The overall goal is to select those operator/context combinations

that are close to (1, 1, 1), but speci�c thresholds and weights for

each dimension of mutant utility depend on the use case and are

subject to future research. For example, equivalent mutants are a

major concern in test generation, as they cause too much work for

a tester. Trivial and subsumed mutants do not cause as much work

but in�ate the mutation score [21, 24].

5.9 Threats to Validity
Prior studies (e.g., [4]) have reported that less than 2% of non-

equivalent mutants are dominators; in contrast, we observed 33%

in our data set. One reason for this discrepancy is that former

studies used Proteum, a mutation system with a very large set of

mutation operators. This poses a threat to external validity, and

future research should verify whether our �ndings generalize to

this signi�cantly richer set of mutation operators. However, we

argue that this seemingly large discrepancy is likely not a major

threat given that some Proteum mutation operators are speci�cally

designed to implement basic coverage criteria via trivial mutants,

which inevitably introduce redundancy and can be easily marked

trivial—even in the absence of context information.

The approximation of mutant utility and the lack of ground truth

introduces noise and is a threat to construct validity; it is possible

that ground-truth knowledge would change our results. This threat

is, however, unlikely to signi�cantly impact our results for three rea-

sons. First, we mitigated this threat by selecting only subjects with

thorough test suites to ensure good approximations. Second, our ra-

tio of equivalent mutants (15.6%) is on par with prior studies on Java

programs that found 16% of mutants to be equivalent [34]. Third, if

an exception is observed on all extant tests that cover a particular

mutant, it is reasonable to deem the mutant undesirable even if an

undiscovered test exists that would not result in an exception.

292

ISSTA’17, July 2017, Santa Barbara, CA, USA René Just, Bob Kurtz, and Paul Ammann

6 RELATED WORK
Mathur [26] determined that the complexity of mutation testing is

O (n2), where n is the size of the program under test, and introduced

the idea of constrained mutation to reduce that complexity to O (n)

by reducing the number of mutation operators to create fewer

mutants. O�utt et al. [29, 31] took an empirical approach to de�ning

an appropriate set of selective mutation operators, and proposed the

E-selective set of �ve operators, while Wong et al. [36, 37] evaluated

combinations of mutation operators for e�ciency and e�ectiveness.

Other researchers have examined whether selective mutation is

more e�ective than random sampling of similar numbers of mutants.

Acree [1] and Budd [6] separately concluded that executing tests

that kill a randomly-selected 10% of mutants could provide results

close to executing tests that kill the full set of mutants. Wong and

Mathur demonstrated similar results [37]. More recently, Zhang

et al. [39] and Gopinath et al. [9, 11] also found no appreciable

di�erence in performance between selective mutation and random

selection. Kurtz et al. reassessed the performance of E-Selective

mutation using dominator mutation score [24] and found it in-

distinguishable from both statement deletion and random mutant

selection. Gopinath et al. [9, 11] expanded this investigation using

a much larger body of open-source code and compared several

di�erent mutation selection strategies with random selection, again

�nding that random selection performs as well as any other strat-

egy. In a later paper, Gopinath et al. [10] took a di�erent approach

to dealing with the large number of mutants, and showed that

determining the mutation score based on as few as 1,000 randomly-

selected mutants provides an estimate of quality of a test suite in

terms of mutation score.

Several researchers have addressed the notion that somemutants

are more valuable than others. Kurtz et al. rendered this notion

more precisely using subsumption graphs [23]. Yao et al. [38] sug-

gested the notion of a stubborn mutant, de�ned as one that is not

killed by a branch-adequate test set. Namin et al. [27] proposedMu-

Ranker, a tool that identi�es hard-to-kill mutants based on the syn-

tactic distance between the mutant and the original program. They

postulate the existence of “super mutants” that are hard to kill and

for which a killing test may also kill a number of other mutants.

Kaminski et al. [22] were the �rst to consider mutation operators

at the next level of detail, recognizing that the mutation operator

group that targets relational operators includes many redundant

mutation operators. They showed that, for any given relational

operator, three mutants will always weakly subsume the other

four mutants, making them redundant. Just et al. [21] performed a

similar analysis targeting conditional operators, and Yao et al. [38]

targeted arithmetic operators.

Jia et al. surveyed mutation testing in general and provided

a detailed review of mutation equivalence detection techniques

[15]. Baldwin and Sayward described how compiler optimization

techniques could detect equivalent mutants [5]. O�utt and Craft in-

vestigated this approach in the context of Mothra [28], and reported

an equivalent mutant detection rate of 15%. An extension of this

approach to include infeasible constraint detection enabled O�utt

and Pan to improve the detection rate to 45% [30]. More recently,

Papadakis et al. [32] proposed equivalent mutant detection via com-

piler optimizations, where program binaries are simply compared

via di�. Surprisingly, this very simple approach yields a detection

rate of 7% to 21%, with a reported potential improvement to 30%.

Voas and McGraw suggested a program slicing approach to equiva-

lent mutant detection [35], which Hierons et al. [14] formalized

and Harman et al. extended with �ne-grained dependence [12].

Schuler and Zeller [34] rank equivalent mutants based on impact

in terms of coverage di�erence, the di�erence in statement coverage

between the original artifact and the mutant. Just et al. [17, 18] took

this approach a step further and identify test-equivalent and equiva-

lent mutants using state infection and local propagation conditions.

While e�ective, these methods require a pre-existing test suite.

Harman et al. argued that a Higher-Order Mutant (HOM) ap-

proach might introduce fewer equivalent mutants than �rst-order

approaches, and that a co-evolutionary approach to mutant genera-

tion should “almost guarantee that no equivalent mutants will be

created” [2, 13].

7 CONCLUSIONS
Existing selective mutation approaches, which ignore program

context, do not outperform random mutant selection. As a conse-

quence, selective mutation, as currently de�ned, fails to eliminate

the many low-utility (equivalent, trivial, and redundant) mutants

that existing mutation techniques produce. This paper forges a new

path out of this dilemma, making four contributions.

First, it shows, via motivational examples, why any useful selec-

tivemutation approachmust be context-sensitive andmust consider

individual mutation operators rather than operator groups.

Second, it proposes a concrete model of mutant utility along

three dimensions of equivalence, triviality, and dominance.

Third, it proposes to model program context using information

extracted from a program’s abstract syntax tree—in particular, in-

formation about parent nodes, child nodes, and data types.

Fourth, it studies the connection between program context and

mutant utility, and shows that context information helps to predict

mutant utility: some program contexts are more likely than others

to yield mutants that are equivalent, or trivial, or have high domina-

tor strength. The empirical results show that program context can

predict mutant utility across a wide range of mutation operators.

One promising next step is to explore a variety of more com-

plex program context models and (non-linear) machine learning

classi�ers to evaluate their predictive capacity for mutant utility.

We conjecture that more complex models of and interactions be-

tween di�erent dimensions of program context are likely to yield

further improvements. Another step is to investigate the trade-o�s

and interactions between equivalence, triviality, and dominance to

determine which thresholds and combinations yield the strongest

test set with the least e�ort.

Our broader vision is to customize program mutation to a tar-

get program, only generating mutants with high utility for that

program. This paper is a �rst step towards realizing this vision.

We hope that the promising results will inspire additional research

that will ultimately yield a turn key, context-sensitive mutation

technique that engineers will adopt in practice.

ACKNOWLEDGEMENTS
We would like to thank Huzefa Rangwala, Andrew McCallum, and

the anonymous reviewers for helpful comments and suggestions.

Bob Kurtz’s research is supported by Raytheon.

293

Inferring Mutant Utility from Program Context ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES
[1] Alan T. Acree. 1980. On Mutation. Ph.D. Dissertation. Georgia Institute of

Technology, Atlanta, GA.
[2] Konstantinos Adamopoulos, Mark Harman, and Robert M. Hierons. 2004. How

to Overcome the Equivalent Mutant Problem and Achieve Tailored Selective
Mutation Using Co-Evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference. Springer LNCS 3103, 1338–1349.

[3] Miltiadis Allamanis, Earl T. Barr, René Just, and Charles Sutton. 2016. Tailored
mutants �t bugs better. arXiv preprint arXiv:1611.02516 (2016).

[4] Paul Ammann, Marcio E. Delamaro, and Je�O�utt. 2014. Establishing Theoretical
Minimal Sets of Mutants. In 7th IEEE International Conference on Software Testing,
Veri�cation and Validation (ICST 2014). Cleveland, Ohio, USA, 21–31.

[5] Douglas Baldwin and Fred G. Sayward. 1979. Heuristics for Determining Equiv-
alence of Program Mutations. Research Report 276. Department of Computer
Science, Yale University.

[6] Tim A. Budd. 1980. Mutation Analysis of Program Test Data. Ph.D. Dissertation.
Yale University, New Haven, Connecticut, USA.

[7] Richard A. DeMillo, Richard J. Lipton, and Fred G. Sayward. 1978. Hints on Test
Data Selection: Help for the Practicing Programmer. IEEE Computer 11, 4 (April
1978), 34–41.

[8] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap.
CRC press.

[9] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. Do Mutation Reduction Strategies Matter? Technical Report. School of
Electrical Engineering and Computer Science, Oregon State University, Corvallis,
Oregon, USA.

[10] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. How hard does mutation analysis have to be anyway?. In IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE).

[11] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and
Alex Groce. 2016. On the Limits of Mutation Reduction Strategies. In Proceedings
of the International Conference on Software Engineering (ICSE). 511–522.

[12] Mark Harman, Rob Hierons, and Sebastian Danicic. 2001. Mutation Testing
for the New Century. Kluwer Academic Publishers, Chapter The Relationship
Between Program Dependence and Mutation Analysis, 5–13.

[13] Mark Harman, Yue Jia, and William Langdon. 2010. A Manifesto for Higher
Order Mutation Testing. In Sixth IEEE Workshop on Mutation Analysis (Mutation
2010). Paris, France, 80–89.

[14] Rob Hierons, Mark Harman, and Sebastian Danicic. 1999. Using program slicing
to assist in the detection of equivalent mutants. Software Testing, Veri�cation,
and Reliability, Wiley 9, 4 (December 1999), 233–262.

[15] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions of Software Engineering 37, 5 (September
2011), 649–678.

[16] René Just. 2014. The Major mutation framework: E�cient and scalable mutation
analysis for Java. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). 433–436.

[17] René Just, Michael D. Ernst, and Gordon Fraser. 2013. Using state infection condi-
tions to detect equivalent mutants and speed up mutation analysis. In Proceedings
of the Dagstuhl Seminar 13021: Symbolic Methods in Testing, Vol. abs/1303.2784.
arXiv:1303.2784, preprint.

[18] René Just, Michael D. Ernst, and Gordon Fraser. 2014. E�cient mutation analysis
by propagating and partitioning infected execution states. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA). San Jose, CA,
USA, 315–326.

[19] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database
of existing faults to enable controlled testing studies for Java programs. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA). San Jose, CA, USA, 437–440.

[20] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In FSE 2014, Proceedings of the ACM SIGSOFT 22nd Symposium on the

Foundations of Software Engineering. Hong Kong, 654–665.
[21] René Just and Franz Schweiggert. 2015. Higher accuracy and lower run time:

e�cient mutation analysis using non-redundant mutation operators. Software
Testing, Veri�cation, and Reliability, Wiley 25, 5-7 (2015), 490–507.

[22] Garrett Kaminski, Paul Ammann, and Je� O�utt. 2013. Improving Logic-Based
Testing. Journal of Systems and Software, Elsevier 86 (August 2013), 2002–2012.
Issue 8.

[23] Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Je� O�utt, and Lin Deng. 2014.
Mutation Subsumption Graphs. In Tenth IEEE Workshop on Mutation Analysis
(Mutation 2014). Cleveland, Ohio, USA, 176–185.

[24] Robert Kurtz, Paul Ammann, Je� O�utt, Márcio E. Delamaro, Mariet Kurtz, and
Nida Gökçe. 2016. Analyzing the Validity of Selective Mutation with Dominator
Mutants. In FSE 2016, Proceedings of the ACM SIGSOFT International Symposium
on the Foundations of Software Engineering. Seattle, Washington, 571–582.

[25] Birgitta Lindström and András Márki. 2016. On Strong Mutation and Subsuming
Mutants. In Twelfth IEEEWorkshop onMutation Analysis (Mutation 2016). Chicago,
Illinois, USA.

[26] Aditya Mathur. 1991. Performance, E�ectiveness, and Reliability Issues in Soft-
ware Testing. In Proceedings of the Fifteenth Annual International Computer
Software and Applications Conference. Tokyo, Japan, 604–605.

[27] Akbar Namin, Xiaozhen Xue, Omar Rosas, and Pankaj Sharma. 2015. MuRanker:
A mutant ranking tool. Software Testing, Veri�cation, and Reliability 25, 5-7
(August 2015), 572–604.

[28] Je� O�utt and William Michael Craft. 1994. Using Compiler Optimization
Techniques to Detect Equivalent Mutants. Software Testing, Veri�cation, and
Reliability, Wiley 4, 3 (September 1994), 131–154.

[29] Je� O�utt, Ammei Lee, Gregg Rothermel, Roland Untch, and Christian Zapf.
1996. An Experimental Determination of Su�cient Mutation Operators. ACM
Transactions on Software Engineering Methodology 5, 2 (April 1996), 99–118.

[30] Je� O�utt and Jie Pan. 1997. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Veri�cation, and Reliability 7, 3 (September
1997), 165–192.

[31] Je� O�utt, Gregg Rothermel, and Christian Zapf. 1993. An Experimental Eval-
uation of Selective Mutation. In Proceedings of the International Conference on
Software Engineering (ICSE). Baltimore, MD, 100–107.

[32] Mike Papadakis, Yue Jia, MarkHarman, and Yves Le Traon. 2015. Trivial Compiler
Equivalence: A Large Scale Empirical Study of a Simple, Fast and E�ective Equiv-
alent Mutant Detection Technique. In Proceedings of the International Conference
on Software Engineering (ICSE). Florence, Italy, 936–946.

[33] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the International Conference on Software Engineering
(ICSE). Buenos Aires, Argentina, 609–620.

[34] David Schuler and Andreas Zeller. 2013. Covering and uncovering equivalent
mutants. Software Testing, Veri�cation, and Reliability, Wiley 23, 5 (2013), 353–
374.

[35] Je�rey M. Voas and Gary McGraw. 1997. Software Fault Injection: Inoculating
Programs Against Errors. John Wiley & Sons, Inc., New York, NY, USA.

[36] W. Eric Wong, Márcio E. Delamaro, José C. Maldonado, and Aditya P. Mathur.
1994. Constrained Mutation in C Programs. In Proceedings of the 8th Brazilian
Symposium on Software Engineering. Curitiba, Brazil, 439–452.

[37] W. EricWong and Aditya P. Mathur. 1995. Reducing the Cost of Mutation Testing:
An Empirical Study. Journal of Systems and Software, Elsevier 31, 3 (December
1995), 185–196.

[38] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent and
Stubborn Mutation Operators using Human Analysis of Equivalence. In Proceed-
ings of the International Conference on Software Engineering (ICSE). Hyderabad,
India, 919–930.

[39] Lu Zhang, Shan-San Hou, Jun-Jue Hu, Tao Xie, and Hong Mei. 2010. Is operator-
based mutant selection superior to random mutant selection?. In Proceedings of
the International Conference on Software Engineering (ICSE). Cape Town, South
Africa, 435–444.

294

	Abstract
	1 Introduction
	1.1 Rationale of Our Approach
	1.2 Contributions

	2 Background on Mutation Analysis
	2.1 Equivalent Mutants
	2.2 Trivial Mutants
	2.3 Dominator Mutants

	3 Mutant Utility
	3.1 Equivalence
	3.2 Triviality
	3.3 Dominance

	4 Program Context
	4.1 Motivational Example
	4.2 Modeling Program Context

	5 Evaluation
	5.1 Subjects
	5.2 Mutation Operator Groups and Operators
	5.3 Mutant Utility
	5.4 Program Context
	5.5 Results
	5.6 Comparison with Random Selection
	5.7 Predicting Mutant Utility
	5.8 Context-Based Mutant Selection
	5.9 Threats to Validity

	6 Related Work
	7 Conclusions
	References

